Crystal Structures of (*E*) and (*Z*)-Isomers of 7-Methoxy-4-methoxyamino-3-[(1-(methoxyimino)ethyl]-*N*-phenyl-1, 2, 3, 4-tetrahydrocinnoline 1, 2-Dicarboximide

Kazuyoshi Seguchi, Satoko Tanaka

Department of Human Environmental Sciences, School of Human Environmental Sciences, Mukogawa Women's University, Nishinomiya 663-8558, Japan

Abstract

The (*E*) and (*Z*)-isomers of the title compounds were prepared from the reaction of 3-acetyl-7-methoxy-*N*-phenyl-1,2-dihydrocinnoline 1,2-dicarboximide and *O*-methylhydroxylamine hydrochloride and the structures were characterized by X-ray diffraction. The (*E*)-isomer crystallizes in monoclinic, space group P2₁/*c* with cell parameters of *a* = 12.168 (3) Å, *b* = 14.908 (3) Å, *c* = 13.258 (3) Å, β = 114.65 (1)°, and *Z* = 4 ; the final residual factor is *R*1 = 0.063 for 2677 reflections. The (*Z*)-isomer crystallizes in monoclinic, space group P2₁/*c* with cell parameters of *a* = 10.867 (4) Å, *b* = 13.507 (2) Å, *c* = 15.170 (3) Å, β = 106.63 (2)°, and *Z* = 4 ; the final residual factor is *R*1 = 0.055 for 3176 reflections.

Naturally occurring polyquinanes have attracted considerable attention from the viewpoints of challenging targets for total syntheses and their biological activities.^{1,2)} In the course of our continuous investigations on stereoselective syntheses of hetero angular polyquinane analogues from active urazoles (*N*-phenyl-1,2-dihydrocinnoline 1,2-dicarboximide derivatives) (1), ³⁻¹¹⁾ we isolated two oxime ethers **2a** and **2b** from the reaction of **1** with *O*-methylhydroxylamine (Scheme 1). Since the ¹H and ¹³C-NMR analyses did

not permit an identification of the framework and the stereochemistry of the compounds, the crystal structures were determined by X-ray analysis.

The synthetic procedure of the title compounds 2a and 2b was as follows: An excess of sodium acetate trihydrate (520 mg) was added to an ethanolic solution (50 ml) of compound 1 (230 mg) and *O*-methyl-hydroxylamine hydrochloride (380 mg), and the solution was refluxed for 3 h. After cooling, water (50 ml) was added to the solution, and then resulting fluores-

Scheme 1 Reaction scheme.

cent precipitates were filtered. The product was identified as compound **3** (90 mg, 36% yield) by spectral comparison with the standard sample.⁶⁾ The filtrate was extracted with dichloromethane. Removal of dichloromethane by rotary evaporation gave oily substances, the NMR spectra of which showed signals corresponding to **2a** and **2b** (the product ratio, 87:13). The oil solidified slowly in ethanol to afford **2a** (49 mg). The residue after concentration of the filtrate was chromatographed on silica gel with dichloromethane as an eluent to afford additional **2a** (9 mg) and **2b** (6 mg) as a minor product. The isolated pure isomers **2a** and **2b** were recrystallized from ethanol to afford compounds appropriate for X-ray analysis, respectively.

X-ray analyses of the colorless plate **2a** (size; 0.60 \times 0.60 \times 0.50 mm) and colorless plate **2b** (size; 0.60 \times 0.40 \times 0.20 mm) were performed on a Rigaku AF-C5R diffractometer with graphite monochromated MoK *a* radiation (λ = 0.71069 Å). The detailed measurement conditions and crystal data are listed in Table 1. The intensity data were collected at 23°C using the ω -2 θ scan technique to a maximum 2 θ value of 55.0°. For **2a** and **2b**, of the 5229 and 5152 reflections which were collected, 5014 and 4903 were unique ($R_{int} = 0.016$ and 0.010), respectively.

The structures were solved by direct methods with

Fig. 2. ORTEP drawing of the Z-isomer of the title compound (2b) with the atomic labeling scheme.

Fable 1	. Cry	stal and	l exp	berimen	tal	data	of 2a	and 2b
Labic 1	• Cry	star and	ւսոր	Joinnen	uui	uata	01 44	and an

	2a (E-isomer)	2b (Z-isomer)
Formula	$C_{21}H_{23}N_5O_5$	$C_{21}H_{23}N_5O_5$
Formula weight	425.44	425.44
Crystal system	monoclinic	monoclinic
Space group	$P2_1/c = 4$	$P2_1/c Z = 4$
а	12.168 (3) Å	10.867 (4) Å
b	14.908 (3) Å	13.507 (2) Å
С	13.258 (3) Å	15.170 (3) Å
β	114.65 (1)°	106.63 (2)°
V	2186.0 (8) Å ³	2133.3 (9) ${\rm \AA^3}$
Dcalc	1.293 g/cm3	1.325 g/cm ³
μ (MoK a)	0.94 cm^{-1}	0.97 cm^{-1}
Т	300 K	300 K
F(000)	896.00	896.00
Crystal dimensions (mm)	$0.60 \times 0.60 \times 0.50$	$0.60 \times 0.40 \times 0.20$
Radiation	graphite monochromated M	foK a (λ=0.71069 Å)
<i>R</i> 1	0.063	0.055
Rw	0.049	0.050
$2\theta_{max}$	55.0	55.0
$(\bigtriangleup / \sigma)_{max}$	0.04	0.06
$(\bigtriangleup \rho \)_{_{max}}$	$0.18 \text{ e-/}\text{\AA}^3$	0.22 e-/Å ³
$(\bigtriangleup ho$) $_{{\it min}}$	-0.22 e-/Å^3	-0.26 e-/Å^3
No. of reflection used	2677 (I>3.00 σ (I))	3176 (I>3.00 $\sigma\left(I\right)$)
No. of parameters	280	280
Measurement	Rigaku Al	FC5R
Program system	TEXSA	AN
Structure determination	direct methods	s (SIR92)
Refinement	full matrix lea	st-squares
CCDC deposition No.13)	742038	742039

	Placement	(11) (10)		
Atom	Х	У	Z	Beq
O (1)	0.5638(2)	-0.1239(1)	0.6399 (2)	5.75 (7)
O (2)	0.8650(2)	0.0752 (2)	0.6778(2)	6.84 (8)
O (3)	0.6028(2)	0.3111 (2)	0.5736(2)	8.03 (9)
O (4)	0.2103(3)	-0.0388 (2)	0.6765 (3)	9.5 (1)
O (5)	0.8336(3)	0.0659 (2)	0.9953 (3)	10.2 (1)
N (1)	0.5110 (3)	0.2546 (2)	0.5814(3)	5.49 (8)
N (2)	0.7328(2)	-0.0442 (2)	0.6528(2)	4.24 (7)
N (3)	0.5806(2)	0.0307 (2)	0.6569 (2)	4.05 (7)
N (4)	0.6690 (2)	0.0935 (2)	0.6601 (2)	4.04 (7)
N (5)	0.7711 (3)	0.0745 (2)	0.8782 (3)	6.8 (1)
C (1)	0.8104 (3)	-0.1191 (2)	0.6579 (3)	4.17 (9)
C (2)	0.8934(4)	-0.1495(3)	0.7557(4)	8.9 (2)
C (3)	0.9656(4)	-0.2216 (4)	0.7581(4)	9.1 (2)
C (4)	0.9549 (3)	-0.2613 (3)	0.6671 (4)	6.6 (1)
C (5)	0.8717 (4)	-0.2318(3)	0.5706(4)	10.0 (2)
C (6)	0.7989 (4)	-0.1600(3)	0.5660(4)	8.3 (1)
C (7)	0.7691 (3)	0.0442 (2)	0.6669 (3)	4.67 (9)
C (8)	0.6179 (3)	-0.0538(2)	0.6498 (3)	4.25 (9)
C (9)	0.6857 (3)	0.1728 (2)	0.7288 (3)	4.24 (9)
C (10)	0.5615(3)	0.2168 (2)	0.6936 (3)	4.50 (9)
C (11)	0.4712 (3)	0.1492 (2)	0.6983 (3)	4.08 (8)
C (12)	0.3750(3)	0.1753 (2)	0.7224 (3)	5.2 (1)
C (13)	0.2876 (3)	0.1154 (3)	0.7183 (3)	6.1 (1)
C (14)	0.2944 (3)	0.0277 (3)	0.6880 (3)	6.1 (1)
C (15)	0.3917 (3)	$-0.0013\ (2)$	0.6674 (3)	5.03 (10)
C (16)	0.4797 (3)	0.0598 (2)	0.6742(3)	3.94 (8)
C (17)	0.7476 (3)	0.1557 (3)	0.8506(3)	5.2 (1)
C (18)	0.7790(4)	0.2340 (3)	0.9277 (3)	8.0 (1)
C (19)	0.8519 (6)	-0.0266~(4)	1.0204(4)	15.2 (2)
C (20)	0.5539 (4)	0.3959 (3)	0.5391 (4)	9.6 (2)
C (21)	0.1018 (5)	-0.0144 (4)	0.6742 (6)	15.5 (3)

Table 2. Atomic coordinates and equivalent isotropic displacement $(Å^2)(2a)$

Table 3. Atomic coordinates and equivalent isotropic displacement $(Å^2)(2b)$

	0.7328 (2)	-0.0442 (2)	0.6528 (2)	4.24 (7)	
	0.5806 (2)	0.0307 (2)	0.6569 (2)	4.05 (7)	
	0.6690 (2)	0.0935 (2)	0.6601 (2)	4.04 (7)	
	0.7711 (3)	0.0745 (2)	0.8782 (3)	6.8 (1)	
	0.8104 (3)	-0.1191 (2)	0.6579 (3)	4.17 (9)	
	0.8934(4)	-0.1495(3)	0.7557~(4)	8.9 (2)	
	$0.9656\ (4)$	-0.2216 (4)	0.7581(4)	9.1 (2)	
	0.9549(3)	-0.2613 (3)	0.6671(4)	6.6 (1)	
	$0.8717\ (4)$	-0.2318(3)	$0.5706\ (4)$	10.0 (2)	
	0.7989(4)	-0.1600(3)	0.5660(4)	8.3 (1)	
	0.7691(3)	0.0442 (2)	0.6669 (3)	4.67 (9)	
	0.6179(3)	-0.0538(2)	0.6498(3)	4.25 (9)	
	0.6857(3)	0.1728 (2)	0.7288 (3)	4.24 (9)	
	0.5615(3)	0.2168 (2)	0.6936 (3)	4.50 (9)	
	0.4712(3)	0.1492 (2)	0.6983 (3)	4.08 (8)	
	0.3750(3)	0.1753 (2)	0.7224 (3)	5.2 (1)	
	0.2876 (3)	0.1154 (3)	0.7183 (3)	6.1 (1)	
	0.2944 (3)	0.0277 (3)	0.6880 (3)	6.1 (1)	
	0.3917 (3)	-0.0013 (2)	0.6674 (3)	5.03 (10)	
	0.4797 (3)	0.0598 (2)	0.6742 (3)	3.94 (8)	
	0.7476 (3)	0.1557 (3)	0.8506 (3)	5.2 (1)	
	0.7790(4)	0.2340 (3)	0.9277 (3)	8.0 (1)	
	$0.8519\ (6)$	-0.0266 (4)	$1.0204\ (4)$	15.2 (2)	
	0.5539(4)	0.3959 (3)	0.5391(4)	9.6 (2)	
)	0.1018(5)	-0.0144 (4)	0.6742~(6)	15.5 (3)	

 $\overline{\operatorname{Beq} = (4/3) \sum_{i} \sum_{j} \beta_{ij} (\boldsymbol{a}_{i}.\boldsymbol{a}_{j})}$

SIR92.¹²⁾ The non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed at calculated positions with their isotropic thermal parameters. The final cycle of the full-matrix least squares refinement was based on 2677 and 3176 observed reflections $(I>3.00 \sigma(I))$ for 2a and 2b, respectively, and 280 variable parameters. The final R1 and Rw values were 0.063 and 0.049 for 2a, and 0.055 and 0.050 for 2b. The positional parameters are given in Table 2 for 2a and Table 3 for 2b. The selected bond lengths, the angles, and the torsion angles are shown in Tables 4, 5, and 6 for 2a, and Tables 7, 8, and 9 for 2b. ORTEP drawings of 2a and 2b are illustrated in Figs. 1 and 2 with atomic labeling scheme, respectively.

The ORTEP drawings of compounds 2a and 2b re-

Atom	х	у	Z	Beq
O (1)	0.8888(2)	0.2456 (1)	0.5807 (1)	4.75 (6)
O (2)	0.5628(2)	0.4306 (1)	0.6372 (1)	3.97 (5)
O (3)	0.6097(2)	0.2727 (2)	0.8826 (1)	5.40 (6)
O (4)	0.9022(2)	-0.1196(2)	0.6475(2)	5.90 (7)
O (5)	0.3044(2)	0.1770 (2)	0.7212 (1)	4.51 (6)
N (1)	0.6842(2)	0.2145 (2)	0.8368(2)	4.99 (7)
N (2)	0.7403(2)	0.3631 (2)	0.5996 (1)	3.01 (6)
N (3)	0.7146(2)	0.2080 (2)	0.6339 (2)	3.52 (6)
N (4)	0.6141(2)	0.2652 (2)	0.6483(2)	3.58 (6)
N (5)	0.3062(2)	0.1466 (2)	0.6324(2)	4.08 (6)
C (1)	0.7950 (3)	0.4512 (2)	0.5751 (2)	3.00 (7)
C (2)	0.7205 (3)	0.5148 (2)	0.5114 (2)	4.12 (8)
C (3)	0.7736 (4)	0.6017 (2)	0.4900 (2)	5.17 (10)
C (4)	0.9019 (4)	0.6219 (3)	0.5318 (3)	5.7 (1)
C (5)	0.9746 (3)	0.5578 (3)	0.5950 (3)	5.5 (1)
C (6)	0.9231 (3)	0.4712 (2)	0.6175 (2)	4.00 (8)
C (7)	0.6296 (2)	0.3617 (2)	0.6299 (2)	2.96 (6)
C (8)	0.7930 (3)	0.2688 (2)	0.6021 (2)	3.39 (7)
C (9)	0.5202 (2)	0.2232 (2)	0.6899 (2)	3.17 (7)
C (10)	0.5903 (3)	0.1538 (2)	0.7655 (2)	3.61 (7)
C (11)	0.6675 (2)	0.0801 (2)	0.7292 (2)	3.27 (7)
C (12)	0.6792 (3)	-0.0180(2)	0.7569 (2)	4.12 (8)
C (13)	0.7566 (3)	-0.0827(2)	0.7282 (2)	4.53 (8)
C (14)	0.8254 (3)	-0.0496(2)	0.6703 (2)	3.95 (8)
C (15)	0.8142 (3)	0.0467 (2)	0.6382 (2)	3.44 (7)
C (16)	0.7339 (2)	0.1104 (2)	0.6679 (2)	3.10 (7)
C (17)	0.4122 (3)	0.1703 (2)	0.6177 (2)	3.62 (7)
C (18)	0.4263 (3)	0.1456 (3)	0.5256 (2)	6.2 (1)
C (19)	0.1922 (3)	0.1393 (3)	0.7390 (3)	6.5 (1)
C (20)	0.6536 (3)	0.3715 (3)	0.8844 (2)	6.3 (1)
C (21)	0.9699 (4)	-0.0938 (3)	0.5861 (3)	7.4 (1)
$\mathbf{P}_{} = (A)^{\prime}$	$\nabla \Sigma \Sigma \rho ($			

 $Beq = (4/3) \sum_i \sum_j \beta_{ij} (\boldsymbol{a}_i \cdot \boldsymbol{a}_j)$

Table 4. Selected bond lengths $(\text{\AA})(2a)$

Atom	Atom	Distance	Atom	Atom	Distance
O (1)	C (8)	1.213 (4)	O (2)	C (7)	1.206 (3)
O (3)	N (1)	1.437 (3)	O (3)	C (20)	1.491 (3)
O (5)	N (5)	1.421 (4)	O (5)	C (19)	1.414 (5)
N (1)	C (10)	1.465 (3)	N (2)	C (7)	1.378 (3)
N (2)	C (8)	1.389 (6)	N (3)	N (4)	1.413(3)
N (3)	C (8)	1.356(2)	N (4)	C (7)	1.393(2)
N (4)	C (9)	1.454 (2)	N (5)	C (17)	1.262(4)
C (5)	C (6)	1.374 (4)	C (9)	C (10)	1.531 (2)
C (9)	C (17)	1.492 (3)	C (17)	C (18)	1.493 (3)

Selected Dol	iu angles ((2a)				
Atom	Atom	Angle	Atom	Atom	Atom	Angle
C (8)	N (2)	125.9 (2)	O (1)	C (8)	N (3)	128.8 (2)
C (7)	N (2)	128.5 (3)	O (2)	C (7)	N (4)	125.6 (4)
N (1)	C (10)	106.8 (4)	N (1)	C (10)	C (9)	114.65 (4)
O (3)	C (20)	108.5 (4)	N (1)	C (10)	C (11)	107.1 (4)
C (7)	N (4)	105.9 (1)	N (2)	C (8)	N (3)	105.3 (1)
N (4)	C (9)	117.6 (4)	N (3)	N (4)	C (7)	106.7 (4)
C (8)	N (4)	110.2 (3)	N (4)	C (9)	C (10)	107.2 (4)
C (9)	C (17)	114.5 (4)	N (4)	N (3)	C (16)	119.7 (4)
O (5)	C (19)	107.8 (5)	N (5)	C (17)	C (18)	126.1 (5)
C (17)	C (9)	115.4 (4)	C (1)	N (2)	C (7)	124.5 (3)
N (2)	C (8)	123.5 (3)	C (7)	N (2)	C (8)	111.4 (3)
N (4)	C (9)	119.9 (4)	C (8)	N (3)	C (16)	129.6 (4)
C (17)	C (18)	118.5 (4)	C (9)	C (10)	C (11)	110.1 (4)
C (9)	C (17)	87.4 (3)	C (10)	C (11)	C (16)	120.5 (4)
	Atom C (8) C (7) N (1) O (3) C (7) N (4) C (8) C (9) O (5) C (17) N (2) N (4) C (17) C (9)	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Atom Atom Angle C (8) N (2) 125.9 (2) C (7) N (2) 128.5 (3) N (1) C (10) 106.8 (4) O (3) C (20) 108.5 (4) C (7) N (4) 105.9 (1) N (4) C (9) 117.6 (4) C (8) N (4) 110.2 (3) C (9) C (17) 114.5 (4) O (5) C (19) 107.8 (5) C (17) C (9) 115.4 (4) N (2) C (8) 123.5 (3) N (4) C (9) 119.9 (4) C (17) C (18) 118.5 (4) C (9) C (17) 87.4 (3)	Atom Atom Angle Atom C (8) N (2) 125.9 (2) O (1) C (7) N (2) 128.5 (3) O (2) N (1) C (10) 106.8 (4) N (1) O (3) C (20) 108.5 (4) N (1) C (7) N (4) 105.9 (1) N (2) N (4) C (9) 117.6 (4) N (3) C (8) N (4) 110.2 (3) N (4) C (9) C (17) 114.5 (4) N (4) O (5) C (19) 107.8 (5) N (5) C (17) C (9) 115.4 (4) C (1) N (2) C (8) 123.5 (3) C (7) N (4) C (9) 119.9 (4) C (8) C (17) C (18) 118.5 (4) C (9) C (9) C (17) 87.4 (3) C (10)	AtomAtomAngleAtomAtomC (8)N (2)125.9 (2)O (1)C (8)C (7)N (2)128.5 (3)O (2)C (7)N (1)C (10)106.8 (4)N (1)C (10)O (3)C (20)108.5 (4)N (1)C (10)C (7)N (4)105.9 (1)N (2)C (8)N (4)C (9)117.6 (4)N (3)N (4)C (8)N (4)110.2 (3)N (4)C (9)C (9)C (17)114.5 (4)N (4)N (3)O (5)C (19)107.8 (5)N (5)C (17)C (17)C (9)115.4 (4)C (1)N (2)N (4)C (9)119.9 (4)C (8)N (3)C (17)C (18)118.5 (4)C (9)C (10)C (9)C (17)87.4 (3)C (10)C (11)	AtomAtomAngleAtomAtomAtomC (8)N (2)125.9 (2)O (1)C (8)N (3)C (7)N (2)128.5 (3)O (2)C (7)N (4)N (1)C (10)106.8 (4)N (1)C (10)C (9)O (3)C (20)108.5 (4)N (1)C (10)C (11)C (7)N (4)105.9 (1)N (2)C (8)N (3)N (4)C (9)117.6 (4)N (3)N (4)C (7)C (8)N (4)110.2 (3)N (4)C (9)C (10)C (9)C (17)114.5 (4)N (4)N (3)C (16)O (5)C (19)107.8 (5)N (5)C (17)C (18)C (17)C (9)115.4 (4)C (1)N (2)C (8)N (4)C (9)119.9 (4)C (8)N (3)C (16)C (17)C (18)118.5 (4)C (9)C (10)C (11)C (9)C (17)87.4 (3)C (10)C (11)C (16)

Table 5. Selected bond angles $(^{\circ})(2a)$

Table 6. Selected torsion angles $(^{\circ})(2a)$

Atom	Atom	Atom	Atom	Angle	Atom	Atom	Atom	Atom	Angle
O (1)	C (8)	N (3)	N (4)	-176.0 (6)	O (2)	C (7)	N (4)	C (9)	- 38.5 (6)
O (3)	N (1)	C (10)	C (11)	-173.6 (4)	O (3)	N (1)	C (10)	C (9)	-51.2 (4)
O (5)	N (5)	C (17)	C (18)	-0.3(4)	O (5)	N (5)	C (17)	C (9)	177.9 (4)
N (1)	C (10)	C (11)	C (16)	91.9 (4)	N (1)	C (10)	C (9)	N (4)	-67.2 (4)
N (1)	C (10)	C (11)	C (12)	-85.5(4)	N (1)	C (10)	C (9)	C (17)	165.7 (4)
N (2)	C (8)	N (3)	N (4)	2.2 (4)	N (2)	C (7)	N (4)	C (9)	144.6 (4)
N (2)	C (8)	N (3)	C (16)	-169.4 (6)	N (2)	C (7)	N (4)	N (3)	7.7 (7)
N (3)	N (4)	C (9)	C (10)	-53.5 (3)	N (3)	N (4)	C (9)	C (17)	72.8 (3)
N (4)	C (9)	C (10)	C (11)	53.6 (4)	N (4)	C (7)	N (2)	C (1)	-177.7 (4)
N (4)	C (7)	N (2)	C (8)	-6.7 (4)	N (4)	N (3)	C (16)	C (11)	-2.4 (4)
N (4)	C (9)	C (17)	N (5)	-3.8 (4)	N (4)	C (9)	C (17)	C (18)	174.6 (4)
N (5)	C (17)	C (9)	C (10)	119.3 (4)	C (2)	C (1)	N (2)	C (8)	-93.9(4)
C (2)	C (1)	N (2)	C (7)	75.9 (4)	C (6)	C (1)	N (2)	C (8)	84.7 (6)
C (7)	N (4)	N (3)	C (16)	166.2 (6)	C (7)	N (4)	N (3)	C (8)	-6.3 (3)
C (7)	N (4)	C (9)	C (10)	174.2 (5)	C (7)	N (4)	C (9)	C (17)	-59.5 (5)
C (8)	N (3)	C (16)	C (11)	168.5 (5)	C (8)	N (3)	C (16)	C (15)	-11.2 (5)
C (8)	N (3)	N (4)	C (9)	-144.4 (5)	C (10)	C (9)	C (17)	C (18)	-62.4(4)
C (11)	C (10)	C (9)	C (17)	-73.5 (5)	C (17)	N (5)	O (5)	C (19)	177.4 (6)

Table 7. Selected bond lengths $(\text{\AA})(2b)$

Atom	Atom	Distance	Atom	Atom	Distance
O (1)	C (8)	1.217 (2)	O (2)	C (7)	1.205 (2)
O (3)	N (1)	1.442 (2)	O (3)	C (20)	1.415 (2)
O (5)	N (5)	1.414 (3)	O (5)	C (19)	1.417 (3)
N (1)	C (10)	1.501 (2)	N (2)	C (7)	1.405 (3)
N (2)	C (8)	1.393 (3)	N (3)	N (4)	1.405 (2)
N (3)	C (8)	1.367 (2)	N (4)	C (7)	1.354 (3)
N (4)	C (9)	1.459 (2)	N (5)	C (17)	1.275 (2)
C (5)	C (6)	1.387 (2)	C (9)	C (10)	1.508 (2)
C (9)	C (17)	1.534 (2)	C (17)	C (18)	1.486 (2)

Table o.	Selected Dol	iu angles ()(20)				
Atom	Atom	Atom	Angle	Atom	Atom	Atom	Angle
O (1)	C (8)	N (2)	127.2 (1)	O (1)	C (8)	N (3)	127.4 (1)
O (2)	C (7)	N (2)	127.9 (1)	O (2)	C (7)	N (4)	127.7 (1)
O (3)	N (1)	C (10)	116.7 (1)	N (1)	C (10)	C (9)	107.5 (1)
N (1)	O (3)	C (20)	92.3 (1)	N (1)	C (10)	C (11)	106.9 (1)
N (2)	C (7)	N (4)	104.4 (2)	N (2)	C (8)	N (3)	105.4 (2)
N (3)	N (4)	C (9)	121.6 (2)	N (3)	N (4)	C (7)	110.5 (2)
N (4)	N (3)	C (8)	108.4 (2)	N (4)	C (9)	C (10)	107.9 (2)
N (4)	C (9)	C (17)	111.1 (2)	N (4)	N (3)	C (16)	119.7 (3)
N (5)	O (5)	C (19)	119.9 (3)	N (5)	C (17)	C (18)	116.7 (2)
N (5)	C (17)	C (9)	122.5 (2)	C (1)	N (2)	C (7)	123.8 (2)
C (1)	N (2)	C (8)	124.9 (2)	C (7)	N (2)	C (8)	111.3 (2)
C (7)	N (4)	C (9)	127.4 (2)	C (8)	N (3)	C (16)	130.4 (2)
C (9)	C (17)	C (18)	120.8 (3)	C (9)	C (10)	C (11)	110.3 (2)
C (10)	C (9)	C (17)	111.7 (3)	C (10)	C (11)	C (16)	120.0 (2)

Table 8. Selected bond angles $(^{\circ})$ (2b)

Table 9. Selected torsion angles $(^{\circ})(2b)$

Atom	Atom	Atom	Atom	Angle	Atom	Atom	Atom	Atom	Angle
O (1)	C (8)	N (3)	N (4)	-178.9 (2)	O (2)	C (7)	N (4)	C (9)	-6.6 (3)
O (3)	N (1)	C (10)	C (11)	-170.1 (2)	O (3)	N (1)	C (10)	C (9)	71.6 (3)
O (5)	N (5)	C (17)	C (18)	-178.2 (2)	O (5)	N (5)	C (17)	C (9)	0.8 (3)
N (1)	C (10)	C (11)	C (16)	-76.1 (2)	N (1)	C (10)	C (9)	N (4)	63.3 (2)
N (1)	C (10)	C (11)	C (12)	101.7 (2)	N (1)	C (10)	C (9)	C (17)	-174.4 (2)
N (2)	C (8)	N (3)	N (4)	1.3 (3)	N (2)	C (7)	N (4)	C (9)	174.0 (2)
N (2)	C (8)	N (3)	C (16)	-169.4 (2)	N (2)	C (7)	N (4)	N (3)	2.4 (3)
N (3)	N (4)	C (9)	C (10)	38.9 (2)	N (3)	N (4)	C (9)	C (17)	-83.8(2)
N (4)	C (9)	C (10)	C (11)	- 52.8 (2)	N (4)	C (7)	N (2)	C (1)	-178.0(2)
N (4)	C (7)	N (2)	C (8)	-1.6 (4)	N (4)	N (3)	C (16)	C (11)	-11.6 (3)
N (4)	C (9)	C (17)	N (5)	-164.5 (2)	N (4)	C (9)	C (17)	C (18)	44.7 (2)
N (5)	C (17)	C (9)	C (10)	75.0 (2)	C (2)	C (1)	N (2)	C (8)	-50.2(2)
C (2)	C (1)	N (2)	C (7)	125.7 (2)	C (6)	C (1)	N (2)	C (8)	130.5 (2)
C (7)	N (4)	N (3)	C (16)	165.9 (2)	C (7)	N (4)	N (3)	C (8)	-2.5 (3)
C (7)	N (4)	C (9)	C (10)	-131.7 (3)	C (7)	N (4)	C (9)	C (17)	105.5 (2)
C (8)	N (3)	C (16)	C (11)	153.8 (2)	C (8)	N (3)	C (16)	C (15)	-28.0(3)
C (8)	N (3)	N (4)	C (9)	-174.5(2)	C (10)	C (9)	C (17)	C (18)	-106.0(2)
C (11)	C (10)	C (9)	C (17)	69.5 (2)	C (17)	N (5)	O (5)	C (19)	-173.2 (2)

veal that two molecules of *O*-methylhydroxylamine are incorporated into urazole **1**, and that the stereochemistry of the methoxyamino group at C-4 and the methoxyiminoethyl group at C-3 (Scheme 1) is a *trans* configuration. In addition, configurations around imino group in **2a** and **2b** are *E* and *Z*, respectively. For **2a**, the space distances between O5 and C18 and between O5 and C9 are 2.665 (2) Å and 3.600 (3) Å, and the torsion angles of O5-N5-C17-C18 and O5-N5-C17-C9 are -0.3 (4)° and 177.9 (4)°, respectively. However, for **2b**, the space distances between O5 and C18 and between O5 and C9 are 3.604 (3) Å and 2.598 (3) Å, and the torsion angles of O5-N5-C17-C18 and O5-N5-C17-C9 are -178.2 (2)° and 0.8 (3)°, respectively.

Experimental

¹H-NMR and ¹³C-NMR spectra were recorded on a Hitachi R-1900 spectrometer in a CDCl₃ solution with TMS as an internal standard. IR spectra and MS spectra were measured a Shimadzu FTIR-8100 spectrometer and a Shimadzu QP-2000A spectrometer, respectively. 3-Acetyl-7-methoxy-*N*-phenyl-1,2-dihydrocinnoline 1,2-dicarboximide (1) and 7-Methoxy-3-[(1-(me-thoxyimino) ethyl]-*N*-phenyl-1,2-dihydrocinnoline 1,2-dicarboximide (3) was prepared by the method reported previously.^{6, 14)} *O*-methylhydroxylamine hydrochloride was commercially available and used without further purifications.

(*E*)-isomer (**2a**); mp 161-162°C; ¹H-NMR δ 1.83 (3H, s, Me), 3.69 (3H, s, OMe), 3.71 (3H, s, OMe), 3.83 (3H, s, OMe), 4.56 (1H, dd, J = 5.1, 1.2 Hz, CH), 5.43 (1H, d, J = 1.2 Hz, CH), 5.57 (1H, d, J =7.7 Hz, NH), 6.71 (1H, dd, J = 7.7, 2.6 Hz, Ph), 7.23 (1H, d, J = 7.7 Hz, Ph), 7.31-7.63 (5H, m, Ph), 8.06 $(1H, d, J = 2.6 \text{ Hz}, \text{Ph}); {}^{13}\text{C-NMR} \ \delta \ 12.3 \ (q), 55.2$ (d), 55.4 (d), 57.4 (q), 62.2 (q), 62.6 (q), 100.4 (d), 108.3 (d), 111.5 (d), 125.8 (d), 128.3 (d), 129.1 (d), 131.1 (s), 131.6 (s), 133.7 (s), 146.6 (s), 149.4 (s), 151.9 (s), 160.8 (s); MS m/z (%) 425 (28, M⁺), 379 (92), 307 (58), 233 (34), 183 (38), 160 (100), 91 (56). IR (KBr) 3400, 1771, 1620, 1418, 1233, 1053 cm⁻¹. Anal. Found: C, 59.23%; H, 5.45%; N, 16.50%. Calcd for C₂₁H₂₃N₅O₅: C, 59.29%; H, 5.45%; N, 16.46%.

(Z)-isomer (**2b**); mp 144-145°C ; ¹H-NMR δ 1.66 (3H, s, Me), 3.57 (3H, s, OMe), 3.86 (3H, s, OMe), 3.91 (3H, s, OMe), 4.51 (1H, dd, J = 5.1, 1.2 Hz)CH), 5.40 (1H, d, J = 5.1 Hz, NH), 6.23 (1H, d, J =1.2 Hz, CH), 6.74 (1H, dd, J = 7.7, 2.6 Hz, Ph), 7.23 (1H, d, J = 7.7 Hz, Ph), 7.34-7.69 (5H, m, Ph), 7.86 $(1H, d, J = 2.6 \text{ Hz}, \text{Ph}); {}^{13}\text{C-NMR} \ \delta \ 17.3 \text{ (q)}, 50.8$ (d), 55.5 (d), 57.5 (q), 62.1 (q), 62.7 (q), 100.4 (d), 108.3 (d), 111.5 (d), 125.8 (d), 128.3 (d), 129.1 (d), 131.1 (s), 131.6 (s), 133.7 (s), 146.6 (s), 149.4 (s), 151.9 (s), 160.8 (s); MS m/z (%) 425 (12, M⁺), 379 (21), 338 (100), 187 (40), 160 (85), 72 (92). IR (KBr) 3400, 1761, 1715, 1617, 1404, 1236, 1049 cm⁻¹. Anal. Found: C, 59.23%; H, 5.45%; N, 16.50%. Calcd for C₂₁H₂₃N₅O₅: C, 59.29%; H, 5.45%; N, 16.46%.

Acknowlegements

The authors wish to thank Miss. Mao Akai (Mukogawa Women's University) for experimental assistant.

References

- 1) Paquette, L. A., Top. Curr. Chem., 119, 1-158 (1984)
- 2) Mehta, G., Srikrishna, A., Chem. Rev., 97, 671-720(1997)
- 3) Tanaka, S., Seguchi, K., Itoh, K., Sera, A., J. Chem. Soc., Perkin Trans. 1, 1994, 2335-2339
- 4) Tanaka, S., Seguchi, K., Sera, A., *Heterocycles*, 38, 2581-2584 (1994)
- 5) Tanaka, S., Seguchi, K., J. Chem. Soc., Perkin Trans. 1, 1995, 519-520
- 6) Tanaka, S., Seguchi, K., Itoh, K., Sera, A., Bull. Chem. Soc. Jpn., 69, 3533-3542 (1996)
- 7) Tanaka, S., Seguchi, K., Chem. Lett., 1998, 1135-1136
- 8) Seguchi, K., Tanaka, S., Heterocycles, 45, 707-713(1997)
- 9) Seguchi, K., Tanaka, S., Recent Res. Devel. in Org. & Bioorg. Chem., 1, 15-24 (1997)
- Tanaka, S., Kato, K., Kimoto H., Seguchi, K., Anal. Sci., 15, 313-314 (1999)
- 11) Seguchi, K., Tanaka, S., Kobayashi, A., *Anal. Sci.*, 20, x147-x148 (2004)
- Altomare, A., Cascarano, M., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G., Camalli, M., *J. Appl. Cryst.*, 27, 435-436 (1994)
- 13) CCDC No. 742038 and 742039 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_ request/cif
- 14) Seguchi, K., Tanaka, S., Bull. Chem. Soc. Jpn., 64, 3188-3190 (1991)

要 約

表題の化合物のE, Z- 異性体を3-アセチル -7-メトキシ-N-フェニル-1,2-ジヒドロシン ノリン1,2-ジカルボキシイミドと塩酸O-メチ ルヒドロキシルアミンとの反応で合成し,X線回 折によりその構造を決定した.E体は単斜晶系, 空間群 P2₁/c,格子定数, a=12.168 (3) Å, b=14.908 (3) Å, c=13.258 (3) Å, β=114.65 (1)°,単位胞 内の分子数Z=4であり,2677の反射数に対しR 因子は0.063であった.Z体は単斜晶系,空間群 P2₁/c,格子定数 a=10.867 (4) Å, b=13.507 (2) Å, *c* = 15.170 (3) Å, *β* = 106.63 (2)°, 単位胞内の分子数 *Z* = 4 であり, 3176 の反射に対して *R* 因子は 0.055 であった。