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Abstract

The aim of this paper is to study some relations between dimensions of the subspaces UZ, Z2, U? and
U? of a finite-dimensional Bernstein algebra A=Ke+ U+Z. The main results are concerned in the
dependency of dim{? on dimU? in the case of dim{2=4.

§ 0. Introduction

A nonassociative, commutative algebra A over
a field K is called a Bernstein algebra if there
exists a nonzero algebra homomorphism o:A—K
that satisfies

(x2)2:w(x)2x2
for every xeA. We suppose that K is an infinite
field of characteristic different from 2 and that
the dimension of a vector space A over K is
finite.

It is known that a Bernstein algebra has al-
ways idempotents. If e is an idempotent of
A, then A has a Peirce decomposition
A=Ke+U+2Z, where Ker(w)=U+2Z,
U= {xeAIex=%x}, Z={xecAl|ex=0}.

It is well known that the subspaces U and Z
satisfy the following:

(a) Lrcz, (b) UZ+272CU, (c) UZ2=<0).

It is also well known that the following identities
holds for w, u;, u, us, uscU and for z, z;,
2€eZ:

(d) =0, uPu=—2u(uu,),

uy (ptas) = — (uu) us— (ugty) uy;
(e) (W2)2=0, u?(uu3) = —2(uup) (yu3),
ulur=—2(u)?, u(uup) =0,
(urut) (usuy) + (uuz) (upug) +
(1144) (uau3) =0;
() u(uz) =0, u;(uz) +uy(usz) =0;

(&) (u2)?=0, (u12) (u2) =0,
(uzy) (uz2) =0,
(1z1) (222) = — (wrz2) (rzy) -

On the other hand, it is known that the set
of idempotents of A4 is given by
{etu+u?|lueUland that if A=Ke+U+Z is a
Peirce decomposition of A with respect to
another idempotent &:=e-+a+a2, then

(h) U={u+2uit|lueU} and |

Z={z—2(a+a*)zlzeZ}

Moreover, it is known that, dimU(and. so also
dimZ) is an invariant of A, that is, it does not
depend on the choice of the particular idem-
potent. Furthermore dimU? and dim(UZ+Z?)
are also invariants of A.D These invariants play
a fundamental role in the problem of classifying
all finite-dimensional Bernstein algebras, that is
yet to be solved. In connection with that we are
interested in possible combinations of the values
of dimU?, dimU?, dimUZ, and dimZ2.

In the following the subspace spanned by
X1, X2, -, x;€A over K is denoted by <{x,-,
Xpk , or simply <x;, -, x> if there exist no
apprehensions of misinterpretations.

§ 1. Sufficient conditions for dimU?=<1

We state some sufficient conditions for dim
U? to be equal to or less than 1.
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Proposition 1, If dimZ?2=dimU, then U?

={0). ~ :
proof. Since U=2Z? by assumption and (a),
it is clear that U?=<0) from (c). u]

Proposition 2. If dimZ?=dimU—1, then dim
=1.

proof. Assume that dimZ2=dimU—1. Then
there exists u#0eU such that U=Z2+Ku.
Hence \2=UZ24+uUcCu(Z2+Ku) CKu? by (c).

dim{?2=dim Ku?=1. o

Proposition 3. If there exists a nonzero ele-
ment z in Z such that U=Uz, then U2=<0).

proof. By assumption there exist a basis
{u;|1=i=p} of U and an element z#0 of Z
such that {uwz|1=<i<p} is a basis of U.
Then, since u,-=l§1ai,-ujz with a;€K for each
i, 1=i<p, we have wu=Zajan(uz) (uz)=0
from (g). - o

Proposition 4. If dimU=dimUZ=1, then U?
=<0).

proof. Let z;,", 24 be a basis of Z and
U=Ku, u#0. Since UZ=U, there exist a;, ",
aq in K suchthat uz;=au(1=i=q), where at
least one element, e.g. a;, is not 0. Then uw?=
a1~ 2(uz;)?2=0 by (g). o

§ 2. The case 2=<0)> with UZ=U

Proposition 5. If dimUZ=dimU, U2=<0),
and dimZ=1, then it is reduced to the case
22=0).

proof. The condition that dimUZ=dimU is
equivalent to UZ=U by (b). Thus we show
that, if Z2#<0), one can choose proper idem-
potent & so that 4 has a Peirce decomposition
A=Ke+U+2Z satisfying that OZ=0, 0?2=<0),
and Z2=<0).

Now choose one nonzero element z; of Z and
put u;=z2 If p=dimU, then Z2=Kz® and
there exists a basis {u;, u, -, u,} of U with
Since UZ=U, uz,, "
independent. Hence, if we write u,~z1=};a,-ju,~

u;:=z32 *, Uyzy are linearly

(i=1,-, p), then the determinant A:=det[a;]
is not 0. Then, the linear equation ;li(u,-zl)zl
=0 with 1,eK implies that éli[éayujm]:
ng[;/Zi(Xij]uj‘Z1:O, therefore, é],a,-,:o for each j
and the determinant of this system of linear
equations is identical to A. Because A#0, we
(ulzx)
zi, ', (upz)zy are linearly independent and there

have 14,=0 for all i, which means that

exist uniquely B;(i=1,:, p) in K such that
u; =3 Bi(uz1)z;. Now, if we define a:=%{;,@,~u,~
and é:=e+4, then, from (h), we get
U={u+2un|lueU}t=U and Z={z—2azlzeZ}=
K(z,—2az;) with (z;—28z;)2=0 by U?=<0)> and
(g). O

§ 3. Some consequences of dim{2=1

Theorem 1. If dim{?=1, then UP=<0) and
(02)2=<0).

proof. Let {uli=1, -
U. Then, by assumption, there exists at least
in the set {wu;
[1=<i<j<p}. Let z;:=uuup>0 and put wu;=

-, pt be a basis of
one nonzero element

a;z; with a;eK for each pair i, j(1=i<j<p).
Then there occur two possible cases: i=j, or
i0<jo. We prove the assertion in each case.

i) If iy=jo, then we can assume that iy=j,=
1, i.e., z;=u,® without loss of generality. From
(d) we have that zu;=—2mu*=0 for all j,
which means that (#=<0>. On the other
hand, since U?=Kz, and z?=0 from (d), we
get also (U?)2=<0). o

ii) If i;<jo, then we can put (j, jo)=(1,
2), i.e., zy=wuu, without loss of generality.
Then, by assumption and (d), it holds that

(1) (u2?=0a1%22=0, (42)?=ap?22=0;

1 1 1
2) zy= “7"12142: “2”651121142=_4‘011u1"22
——l—a anZity;
4 11224141

and in like manner
1
(3) z1u2=z—a11a22z1u2;

1 1
4) Zlui='2‘a1iazzzlu1+"2“0-'2ia1121u2
for all i(3<i<p).
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The equation (1) implies the following

(5) z:2=0 or aj;=an=0.
Thus, if apja;>4, then U3=<0> by virtue of
(2),(3) and (4), and moreover zlz=——2—u12u22
=——2—a11a22112 by (5). On the contrary, if aj

ap=4, then this case belongs to the case =

Jo—=1, since u12=a1121#0. m}

Corollary 1. If dimU?=dimZ=1, then UZ+

Z2={0>.
proof. The claim follows from Theorem 1
since U?=Z. m]

Theorem 2. If dimU?=1 and dimZ=2, then
dimUZ <dimU.

proof. Let {u;, -, u,} be a basis of U and
choose a basis {z;, z2} of Z such that U?=
Kz;. Then we get Uz;=0 as a corollary of
U
>. Put wyj=ayzi and wuz=Xypux with ay, 7a

Theorem 1. Therefore UZ=<uz,, uxzs, -

eK for every i, j(1=i<j=<p). Then, since
ui{uzy) +u;(uzy) =0 and (uz,) (u;z,) =0 from (f)
and (g), respectively, the following equations
hold for each pair (i, j):

)] Tautit Tapri=0,

(@) Fawirurin=0.

Define Tk = 2Tk and a.k:=};ajk for each
k. Then, from (1) Of—“;[;aikrjk]—l-;[;ajkrik]
=3 [; it z C b aji)ri- Therefore

(3) Taurkt Tagu=0 for i=1,- p.

There are two possible cases.

If 7,=0 for all k, then, putting Uo: =T,
we have that wz=Ywizz=Z [ Jraml=
L[ Zradwe= S ru=0. Therefore, by adopting
{ug, uy, -+, up} as a basis of U, we get that U
2= ZKuz,. So dimUz, <dimU.

If 74 #0 for some £k, then there exist two
situations:

i) If Zaurx#0 for some i, then &, ¢,
defined by 5,-:=;a,-krk(i=1 .5, p) satisfy the
simultaneous equations X 74&=0(=1,, p),
which is shown from (2), and &,#0 for some i
by assumption. Therefore det[yy];.«+=0, which

means that w2z, -, upz, are linearly dependent

and dimUz,<p.

i) If Taure=0 for all i, then euations 3)
is ‘reduced to

4) Saqu=0 for i=1,, p.
Since U X U= Zau1=a.2 for all i, the claim
that a.,=0 for all k& is contrary to the as-
sumption that dimU?=1 and we can conclude
that «.,#0 for some k. Then the simultaneous
equations Xy €,=0(i=1, -, p) have non-trivial
solutions &,=a.,(k=1,---, p), which means that
dimUz, <p. o

§ 4, The case dim{2=2, 3, or 4

First of all we state two lemmas which will
be used in the proofs of the theorems following
below. The first lemma is elementary.

Lemma 1. Let B={a;, a5, ", ax} (k>0) be a
basis of a k-dimensional vector space F and
b=2Xla; a nonzero vector with some A;=0.
Then, also the set {a,, @, ", a1, b, air;,
-+, agy obtained from B by replacing a; with b

is a basis of V.

Lemma 2. Let {u;]i=1,-, p} be a basis of
U and {z,=u;;|r=1,, k} a basis of U2
where we suppose that k=dimU?, 15§ =0,
SZSRk=Ep, 1515 hH= S Sp, and i,=j, for
r=1,2,, k. If X is a subspace of U and
zu,eX for each r(1=r=k) and each te{i,
Jis iy, jas, ik jif, then zu,eX for each
r(1=r=<k) and each t(1=t=p).

proof. We shall put z,=wu;(i=i;, j=j;) for
any s(1=s=k) and wwu,=Xa;"z, wu,=e;"z,
for each t(1=t=p) with tel{iy, ji1, b» 2>
i, jeb. Then, by (d), zw,=— (uu)uj— (uu)u;
=—Ya;\zu;— Sa;Pzu;, where zu;, zu;eX by
assumption. Therefore zu,eX. m}

Theorem 3. If dimU?2=2, then U?=<0)> or
else (U2)2=<0)> and, in either case, dimUB=1.

proof. Let u,,, u,(p=2) be a basis of
U. Then, by assumption, we can choose two
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products wu; and wy; with i), k=1, ik,
(,))=(k, D, as a basis of U2. On the other
hand we can easily see that each possible com-
bination of w;, u;;ux, w;, denoted simply [if,
k1], belongs to one of the following five type-
s, by changing the number i of u;, if necessary:

1: [11, 22] (i.e. w2, u?)

2: [11, 12] G.e. w2, wu,)

3: [11, 23] (.e. ui?, wpus)

4: 12, 13] (.e. wyuy, uus)

5: [12, 341 (i.e.

Once a basis z;, 2o of U? is chosen, each

uylty , Usily)

remaining product ua;eU? will be written wu;—
a1+ Byz2 with a;, B;€K. We shall establish the
assertion of the theorem for each type,
separately.

Type 1: [11, 22]

We put z;=u;> and z,=u,2. Then by (d)

(1) ziuy=2u,=0, zZi="4a12P12Z142,
and by (e)

(2) z2=2z,2=0, therefore

2122= —2(Uu2) 2= — 4128122122
If 4a;5B12=—1, then we can conclude from (1)
that zu;=0 for i, j=1, 2, which implies by
virtue of Lemma 2 that zju,=z,u;—0 for all
i(1=i=p). Consequently we have U?=0. On
the contrary, if 4ap;B82>0, we obtain that
U3CKzju, and dimUB=<1 from (1). Also (U?)?2
=0 from (2). o

Type 2: [11, 12}

We put z;=u;® and zZz=uu,. If B0, then
this type is reduced to Type 1, as is seen easily
by Lemma 1. Therefore we can suppose Sx
=0, that is, u>=axnz;. Define X by X:=Kz
u,. Then by (d) and by assumption

(1) zu;=0, z:u1=*7z1uz€X, SO
1
LU= _?azzzlul =0,

therefore by Lemma 2
2) zwmeX, ueX for all i(1Zisp).
Consequently we have UPCX and so forth.
Moreover, (e) and (u u,)?2= —%u,zuf: -“;‘a’zzmz
" =0 imply that (U?)2=<0). o
Type 3: [11, 23]

We put zi=u?, and zy=u,u;. If there exists

at least one nonzero element in {f, B} or
{a2,a33,B12,B13}, then this type is reduced to
Type 1 or Type 2, respectively, as is shown by
Lemma 1. Therefore we can suppose that ay,=
Br=an=PFu=PF,=F3=0, i.e., u2=us?=0, wu,
=apu? and wus;=apu?. Then by assumption
and (d)
(1) z=zu;=0 for i=1, 2, 3.

Consequently by Lemma 2

(2) zy;=zu;=0 for all i(1=i<p),
which means that (3=<0). o

Type 4: [12,13]

We put z,=u;u, and 'z2=u1u3. If there exists
at least one nonzero element in {ay,f1,82,
a3t or {ax,B3), then this type is reduced to
Type 2 or Type 3, respectively, as is shown by

=0, i.e., u2=0 for i=1, 2,3 and wu3=axnz
+ B2322. Now define the subspace X of U by
X:=Kzu;, Then by assumption and (d)

(1) ziw =21y =201 =23 =0, Zpthy= —Z1Uhs.
Therefore by Lemma 2

(2) zuieX, zueX for i(1<i<p),
which means that {PCX and so forth. On the
other hand, by assumption and (e), z2=z2=
72122=0. This implies that (U?)2=<0). o

Type 5: [12, 34]

We put zy=wu, and zy=usu,. If there exists
at least one nonzero elemént in {fu,Pfn,amn,
agt, {ay,an » B3 71344} or {0113 sax, P, pa,
@14, ,B14, P2}, then this type is reduced to
Type 2, 3 or 4, respectively, as is shown by
Lemma 1. Therefore we can assume that wu;=0
for all (i, )=, 2),(3, 4 (=i, j=4). Then
by assumption and (d)

(1) zu =z, =2u3=2,u,=0,

U3 =Z U =21 =24 =0.
Then by Lemma 2

(2) ziui=zu;=0 for all i(1=i<p).

Therefore #=<0)> and so forth. a)

Corollary 2. If dim{?=2 and U?=Z, then
UZ=<0> or else Z2=<0)>, and, in either
case, dimUZ=1.
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Theorem 4. If dimU?=3, then dimUP=2 or
else (U2)2=<0) and, in either case, dimUP?=3.

proof. We shall prove the theorem in the
same method as one for Theorem 3 that is
composed of classifying the types of base -ele-
ments of U? and computing separately according
to the types, reducing to the established types
before by virtue of Lemma 1 and Lemma 2.
However, in order to avoid redundance, we
shall describe in the following only results of
verification omitting the detail of computing.

Let u;, -, u, be a basis of U. Then, by
assumption, we can choose three products
wy; , wew; and wu,u, with i=j, k=1, m=n,
ik=m, (i, j)>~&k,D>=(n, n), as a basis of
U?. Then each possible combination in three
products, denoted by [ij, kI, mn] for short,
belongs to one of the fourteen types listed below
by changing the number i of u;, if necessary:

1: 11, 12, 22] 2: 12,22, 23]
3: [11, 12, 23] 4: [11, 22, 33]
5: [11, 22, 23] 6: [12, 13, 23]
7. 11, 22, 34] 8 [11, 12, 34]
9: [11, 23, 24] 10: [12, 13, 14]
11: [12, 13, 24] 12: [11, 23, 45]
13: [12, 13, 45] 14: [12, 34, 56]

Once a basis z;, 22, 23 of U? are chosen,
every remaining product uu;eU? will be written
U=z + Pz trygs with ay, B4, 71 ;€K

Type 1: [11, 12, 22}

We put z,=u®, zz=u;u4, and zZz3=u,?>. Then
it is shown that PC{zju,, zzu;> and dimU?
= 2. ]

Type 2: [12,22,23]

We put zi=u?, z=u,?, and zz=u,us;. Omit-
ﬁng the case that is reduced to Type 1, we can

assume that asz;;=y;;=0. Then it is shown that
UPclzuy , zius, zous> and that zu, , zius, Zous
are linearly dependent, so dimU?=2.

Type 3: [11, 12, 23] ,

We put zi=u;2, z2=uju, and 2z3=u,u;.
Omitting the case that is reduced to Type 1 or
Type 2, we can assume that Sn=F=72=71

=0. Then it is shown that U3C<{zju,, z3u;) and

so forth. O

Type 4: [11, 22, 33]

We put z;= Omit-
ting the case that is reduced to Type 1 or Type
2, we can assume that o;=8;=y;=0 for all
i, j(1=i=<j=3). Then it is shown that (P=<0)

and that, together with the preceding results,

u?, z=u?, and z;=us?.

dim{P=£2. ]
Type 5: [12, 22, 23]
We put z;=uu,, zz—uz, and z3;=u;2. Omit-

ting the case that is reduced to Type 1, 2, or
3, we can assume that 01137’11:7’33:‘811:‘833:
a13=713=0. Then it is shown that [PcC<{zu;,

‘ZaUy , Zauzy and that (U2)2=<0). o

Type 6: [12, 13, 23]
We put z
Omitting the case that is reduced to Type 2 or
Type 5, we can assume that a;=p;=r;=0 for
i=1, 2, 3. Then it is shown that U3C<{zu;,

=uly , Z=uu3, and zZ3=uu;.

zzuyy "and so forth. o
Type 7: [11, 22, 34]
We put zy=u;?, z,=u?, and z3;=usuy. Omit-

ting the case that is reduced to Type 1, 2,
3, or 4, we can assume that a;3=pfi=ri=au=
Baa=rau=r2=un= = fu=TuT an= = au=1x
=0. Then it is shown that UPCKzju, and so
forth. 0

Type 8: [11, 12, 34]

We put zi=u?2, =wuy, and Zz3=usuy.
Omitting the case that is reduced to Type 1,
2,3,5, or 7, we can assume that Byp=7rn=
Bs=run=Pu=ru4=r2=f=rn=Bu=Tuu=rn=1n
=(. Then it is shown that U?*CKzu, and so
forth. : o

Type 9: [11, 23, 24]

We put z;
Omitting the case that is reduced to Type 2,
3,5,7, or 8 we can assume that a;=p8;=r;=
B1i=7r1i=0 for j=2, 3, 4. Then it is shown that
UBPCKzu, and so forth. o

Type 10: [12, 13, 14]

We put zy=uju,, 2=uus, and z3=uuy.

:u12 y Q2 — UalUs, and T3 =UzUy.

Omitting the case that is reduced to Type 3,
5,6, or 9, we can assume that «;=§;=r;=

for i=1,2,3,4 and a3s=pP2=7r3=0. Then it
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is shown that UBC<{zyus, zjus, Zo44y and that
(U?)2=<0). o
Type 11: [12, 13, 24]
We put zi=ujuy, Zp=uusz, and z3=uyu,.
Omitting the case that is reduced to Type 3,

=7;=0 for j=1,2,3,4 and B8;=y;=0 for
(i, H)=U, 4), (2, 3). Then it is shown that
VP {zyus, zusy and so forth. |
Type 12: [11, 23, 45]
We put z;=u?, 22=uu;, and z3=uls.
Omitting the case that is reduced to Type 2,

=r;=0 for i=2, 3,4, 5 and a;=8;=r;=0 for
i=2,3 and j=4,5 and B;;=7,;=0 for i=2,
3,4,5. Then it is shown that U3=<0> and so
forth. o

Type 13: [12, 13, 45]

We put zy=wu, , 2=ujus, and zz=u4ls.
Omitting the case that is reduced to Type 3,
5,6,8,9,10, 11 or 12, we can assume that
ay=PBi=75s=0 for i=1,2,3,4,5 and ay=as
=a3=a3s= L= P1s= Pfu= P =Tru=T15=Tn=ru=
725=734=735=0. Then it is shown that UPC
Kzyu; and so forth. o

Type 14: [12, 34, 56]

We put ziy=wuju,, 2=usus, and 23=usus.
Omitting the case that is reduced to Type 8,
10, 11, 12, or 13, we can assume that wu;=0
for every pair (i, )=(1,2),3,4),(5,60=
i, j=6). Then it is shown that U*=<0> and so
forth. m]

Corollary 3. If dimU?2=3 and U?=Z, then
dimUZ=2 or else Z22=<0), and, in either
case, dimUZ=3.

Theorem 5. If dimU?=4, then dimUP=5 or
else (U2)2=<0)> and, in either case, dimlP=6.

proof. We shall state here also only results of
verification omitting the detail of computing.

Let u;,--, u, be a basis of U. Then, by
assumption, we can choose four products z;=
Uillj , Zy=uglly , 23 = Unl,, and z4=u3u,, where

i=j, k=1, m=n, s=t, i=k=m=s, (i, j)=(k,
Dx(m, n)>=(s, t), as a basis of U2 Then
each possible combination in the four
products, denoted by [ij, kI, mn, st], belongs
to one of the following thirty-nine types by
changing the number i of wu; if necessary:

1: [11, 12, 13, 22] 2: [11, 12, 13, 23]
3: 11,13, 22, 23] 4: [11, 12, 22, 33]
5: [11, 22, 33, 44] 6: [11, 13, 14, 22]
7: [11, 12, 13, 14] 8: [11, 14, 22, 33]
9: [11, 12, 13, 24] 10: [11, 12, 22, 34]
1: [11, 13, 22, 24] 12: {11, 12, 24, 33]
13: [11, 12, 23, 34] 14: [11, 12, 23, 24]
15: [11, 23, 24, 34] 16: [12, 13, 14, 23]
17: [12, 13, 24, 34] 18: [11, 22, 33, 45]
19: [11, 13, 22, 45] 20: [11, 22, 34, 35]
21: {11, 12, 23, 45] 22: [11, 12, 13, 45]
23: [11, 23, 24, 35] 24: [11, 13, 24, 25]
25: [13, 14, 15, 22] 26: [12, 13, 14, 15]
27: [12, 13, 14, 25] 28: [12, 13, 24, 35]
29: [12, 14, 23, 35] 30: [12, 13, 23, 45]
31: [11, 22, 34, 56] 32: [11, 12, 34, 56]
33: [11, 23, 24, 56] 34: [12, 13, 14, 56]
35: - [12, 13, 24, 56] 36: [13, 14, 25, 26]
37: [11, 23, 45, 67] 38: [12, 13, 45, 67]
39: [12, 34, 56, 78]

Type 1: [11, 12, 13, 22]

We put zi=u?, z,=ujlt, , Zz3=u 3, and ;=
u2. Then it is shown that UPClzju,, zi4;, 2
uy, z44;) and so dimUP=<4. i

Type 2: [11, 12, 13, 23]

We put z;=ui?, z2=uuy, z3=u i3, and z,=
usu;. Omitting the case that is reduced to Type
1, we obtain that UPC<{zu,, zius, Z3Us , 24k
and so dim{P=4. O

Type 3: [11, 13, 22, 23]

We put z;=u;?, Zo=uus, za=ux?, and z=u,
u;. Omitting the case that is reduced to Type 1
or Type 2, we obtain that PC{zjus, z3Us, 24
u;) and that, together with the prededing
results, dim{P=4. |

Type 4: [11, 12, 22, 33]

We put zi;=u?, =wuy, z3=u,?, and z,=
u32. Omitting the case that is reduced to Type 1

—6—
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or Type 3, we obtain that U3C<{zju,, z3u;> and
that, together with the prededing results, dim
UP=4. O

Type 5: [11, 22, 33, 44]

We put zi=u?, =u?, z3=us?, and z4=
u2. Omitting the case that is reduced to Type
4, we obtain that UPC{ziu,, 2iU4s, Z1Us , ZoUs ,
Zoly , 23Uy and that zyu, , Zius, Ly, Z22U3 , 22
Uy, Z3Uy are linearly dependent, so dim(ﬁés, or
else (U2)2=<0). o

Type 6: [11, 13, 14, 22]

We put zy=u?, 2=y, Z3=uUs, and z,=
u,2. Omitting the case that is reduced to Type
1,2,3,4, or 5, we obtain that UBC{zu,, zi
Uy, Zila, Zolly , T3l , Z3u3y and that zyu,, zZius,
Z1lUy s ZoUy, Z3l,, Z3Usz are linearly dependent, so
dim{B =S5, or else (U2)2=<0). o

Type 7: [11, 12, 13, 14]

We put zy=u?, Z=wly, Z3=ujl3, and zZ,=
ujuy. Omitting the case that is reduced to Type
1,2, or 6, we obtain that BC{zyu, zius, 21
Uy, 23Uy, Z4ky, Zaltsy and that (U2)2=<0). o

Type 8: [11, 14,22, 33]

We put zi=u?, Zo=ujls, Z3=ux?, and 4=

us?>. Omitting the case that is reduced to Type
1,3,4,5, or 6, we obtain that UPC<{zu,,
zsu3> and so forth. O

Type 9: [11, 12,13, 24]

We put zi=u?, =uly, Z3=u U3, and 2=
uuy. Omitting the case that is reduced to Type
1,2,3,4,6, or 7, we obtain that Bc{z
Uy, ZilUs, 23U, Zay) and SO on. o

Type 10: [11, 12,22, 34]

We put zi;=u?, 2=uily, Z3=uy?, and z4=u;
uy. Omitting the case that is reduced to Type
1,8, or 9, we obtain that UPC<{ziu,, z3u;> and
so forth. ' o

Type 11: [11, 13, 22, 24]

We put zi=u?, 22=uilts, 23=u%, and zZ4=u,
u,. Omitting the case that is reduced to: Type
1,3,4,6,9, or 10, we obtain that UBc<{z
us3, z3uy) and so forth. m]

Type 12: [11, 12, 24, 33]

We put zi=u?, 2=wlly, 3=y, and z,=
u;2. Omitting the case that is reduced to Type

1,2,3,4,6,8,9,10, or 11, we obtain that
U3z, , zs4y> and so forth. 0

Type 13: [11, 12, 23, 34]

We put zy=u?, 22=ujly, Z3=uu3, and Z,=
uzu,. Omitting the case that is reduced to Type
1,2,3,6,8,9, 10, 11 or 12, we obtain that
U C{zity, 23Uy, Z441, Zallyy and so on. 0

Type 14: [11, 12, 23, 24]

We put zi=u?, z=ujly, Z3=ust3, and z,=
usuy. Omitting the case that is reduced to Type
1,2,3,4,6,7,8,9, 12, or 13, we obtain
that UPC{ziuy, 23Uy, 24y, 243y and so on. O

Type 15: [11, 23,24, 34]

We put zi=u?, Z=usl3, Z3=Usts, and z;,=
usuy. Omitting the case that is reduced to Type
2,6, 12, 13, or 14, we obtain that UPC{z;
us, zZ4u;) and so forth. m]

Type 16: [12, 13, 14, 23]

We put zi=ujtr, Z=u s, z3='u1u4, and z,=
Uslts. Omitting the case that is reduced to Type
2,7,9,13, 14, or 15, we obtain that UPC{
ZoMy  Zaly , ZaUs, Zatyy and so forth. o

Type 17: [12, 13, 24, 34]

We put zy=ujiy, Zp=ujls, L3=Uylly, and Z4=
usus. Omitting the case that is reduced to Type
9, 13, or 16, we obtain that UPC{zyu,, zou;,
Z3Uy , Zally, Zay> and so forth. O

Type 18: [11, 22, 33, 45]

We put zi=u?, 22=u?, Z3=u3?, and zZ,=1uy
us. Omitting the case that is reduced to Type
4,5,8,10, or 12, we obtain that UPC{zju,,
zZius , Zousy and so forth. ‘ m]

Type 19: [11, 13,22, 45]

We put z;=u?, 2=uly, Z3=u%, and zZ;=1u,
us. Omitting the case that is reduced to Type
1,3,4,6,9, 10, 11, 12, 16, or 18, we get
that UPc{zu,, i3, 24> and so forth. i

Type 20: [11, 22, 34, 35]

We put zi=u?, Z=u?, 23=Usuy, and =i
us. Omitting the case that is reduced to Type
8,9,10, 12, 14, 15, 16,18, or 19, we get
that UPC<{zju,, z3us) and so forth. ]

Type 21: [11, 12, 23, 45]

We put zi=u?, Z=ujlts, Z3=Uyli3, and z4,=
usus. Omitting the case that is reduced to Type
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1,2,3,9,10, 11, 12513, or 19, we obtain
that UPc<{zju,, z;u;> and so. forth. o

Type 22: [11, 12, 13, 45}

We put zi=u?, 2=utt,, Z3=U;l3, and z4=
usus. Omitting the case that:is reduced to Type
1,2,6,7,9, 10, 11, 13,  or 21, we obtain
that U3 C<zuy, zi43, Zou3» and so forth. |

Type 23: [11, 23, 24, 35]

We put zi=u?, 22=Ullz, Z3=Usls, and - z,=
usus. Omitting the case that is- reduced to Type
6,9,12,13, 14, 15, 16, 17, 19, 20, 21, or
22, we obtain that UPC<{zuy, ZoMs, 23Uy, ZaUs,
zquyy and so forth. S A =

Type 24: [11, 13, 24, 25]

We put zi=u;?, z2=uls, Z3=usis, and z,=
uus. Omitting the case that is reduced to Type
9,10, 11, 12, 13, 14, 15, 19, 20, 21, or 22,
we obtain that UPC{zjus, 2y, 2oUs, 23U, 24
Uy, Z4usy and that zyus, Zoug, ZoUs, Z3uy, Zaly
zZ4uy are linearly dependent, so dimUP=35, or
else (U?)2=<0) and that dim{P?=6. o

Type 25: [13, 14,15, 22]

We put zy=ulUs, Z=Ujlly, Z3=UUs, and z,=
uy?. Omitting the case that is reduced to Type
6,7,12, 13, 14, 15, 16, 19, 20, 23, or 24,
we obtain that B C{zyus, zZius, 2usy and so
forth. a

Type 26: [12, 13, 14, 15] _

We put zi=wuuy, Zo=uls, Z3=ujuy, and z,=
wus. Omitting the case that is reduced to Type
7, 14,16, or 25, we obtain that PC{zu;, z;
Uy, Zils , Zolly , ZoMs, Zausy and that zus, ziu,,
ZiUs , ZUs, ZoUs Zaus are linearly dependent, so
dimUB =<5, or else (U?2)2=<0> and that dim(3
= 6. m

Type 27: [12, 13, 14, 25]

We put zi=uy, Z2=uUjUs, Z3=uUly, and z,=
u,us. Omitting the case that is reduced to Type
7,9,13,14, 16, 17, 21, 22, 23, 24, 25, or
26, we obtain that PC{zus, ZiUs, Zilts, Uy
and so forth. o

Type 28: [12, 13, 24, 35]

We put zy=u Uy, Z=ujls, Z3=utly, and z4=
usus. Omitting the case that is reduced to Type
9,13,16, 17, 21, 22, 23, 24, or 27, we ob-

tain that UPC<{zyu;3, ziUs, Zous) and so forth. O

Type 29: [12, 14, 23, 35]

We put z,=ujts, Z=uUlly , Z3=Usl3, and z,=
usus. Omitting the case that is reduced to Type
9,13, 16, 17, 21, 22, 23, 24 or 27, we get
that UBC{zus, zius, Z34s) and so on. m

Type 30: [12, 13,23, 45]

We put zy=uuy, Z=ul3, Z3=UU3, and zz=
Ugls. Omitting the case that is reduced to Type
2,15, 16, 21, 22, 24, 27, or 28, we obtain
that U2C{zu;, z;u,» and so forth. O

Type 31: [11, 22, 34, 56]

We put zi=u?, 22=u?, Z3=usus, and z,=us
ug. Omitting the case that is reduced to Type 8
, 10, 12, 18, 19, 20, 21, or 23, we obtain that
U3CKzju, and so forth. o

Type 32: [11,12, 34, 56]

We put z,=u?, 2=u Uy, Z3=usly, and z,=
usug. Omitting the case that is reduced to Type
9,10, 11, 13, 19, 21, 22, 23, 24, or 31, we
obtain that UPCKzju, and so forth. |

Type 33: [11, 23, 24, 56}

We put z;=u?, 22=uliy, Z3=Usly, and z,=
usus. Omitting the case that is reduced to Type
6,12, 13, 14, 15, 19, 20, 21, 22, 23, 24,
25,27, 29, 30, 31, or 32, we obtain that U3
CKzus and so forth. a

Type 34: [12, 13, 14, 56]

We put zi=uuy, 22=uiUs, Z3=uiy, and z,=
usug. Omitting the case that is reduced to Type
7,14, 16, 21, 22, 24, 25, 26, 27, 29, 30, or
33, we obtain that UPC<{zyu3, zjUs, 2oty and so
forth. ]

Type 35: [12, 13, 24, 56]

We put zi=ujly, Z2=U U3, Z3=Ulls, and Z,=
usug. Omitting the case that is reduced to Type
9,13,16, 17, 21, 22, 23, 24, 27, 28, 29,
30, 32, 33, or 34, we obtain that UPcC{zu;,
ziug) and so forth. o

Type 36: [13, 14, 25, 26]

We put zy=uyus, Za=uUjly , Z3=Usls, and z,=
usug. Omitting the case that is reduced to Type
21, 22, 24, 27, 29, 30, 33, 34, or 35, we ob-
tain that UBC{zju,, zsus> and so on. a

Type 37: [11, 23, 45, 67]

Asi
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We put zi=u®, Z=uUl3, Z3=Uqls, and z4=
ugl;. Omitting the case that is reduced to Type
19, 21, 23, 31, 32, 33, or 35, we obtain that
1#=<0> and so forth. o

Type 38: [12, 13, 45, 67]

We put z;=ujuy, L=UjUs, Z3=Usus, and z4=
ug;. Omitting the case that is reduced to Type
21, 22,24, 27,29, 30, 32, 33, 34, 35, 36, or
37, we obtain that UPCKzju; and so on. a

Type 39: [12, 34, 56, 78]

We put zy=uuy, Z=Usly, Z3=uUsug, and z,=
usug. Omitting the case that is reduced to Type
32, 35, 37, or 38, we obtain that {#=<0) and
so forth. o

Corollary 4, If dimU?=4 and U?=Z, then
dimUZ=Z5 or else Z2=<0)> and, in either
case, dimUZ=6.

Remark on Theorem 5.

One cannot replace the number 6 in the
theorem with any other less values. In order to
show this, we shall construct the example of
Bernstein algebra in which dimU?=4 and dim
UP=6 (and (U2)2=<0)).

Example.
Let A=<e, uy, ", U0, 21,
mutative 15-dimensional algebra having the fol-

-, 2o be a com-

lowing multiplication table:

1
ew,=—u; ez;=0 up=gzg;

el=e >
1 _
u1u2=az1-|-?a 1Z2
s =2apz; +—i1;—(a13) “lrzs
1
u1u4=4aﬁr21 +E(aﬁ}’) _1Z4
1
U3 = P2, +7,B_IZ3
1
Uy =2872 +§(/87') 24

1
Uss =723+ 7" '2

Z1Ur= U5 Z1U3=Ug Z1Us— U7
DU3=Ug DU Uy Z3UsT Uy
U1 — —2au5 Z3U1= _40(‘3116

4ty = —8afyuy Z3Uy= —2Pug

Zaty=—4B7ruy Zali3= —2ruyp,

where «,fB,7 are arbitrary nonzero elements in
K, and other products are zero. Then one can
see that A4 is a Bernstein algebra having the
decomposition A=Ke+U+Z with respect to the
Yo, 2=z,
zo> and, moreover, that it satisfies 2=Z, U?

={us, -, upy and (U?)2=0).

idempotent e with U=<u,,

We hope to generalize the relation between
dimU? and dimUP? to the case of dim{?>4. For
that purpose it may be more desirable to prove
Theorem 3, Theorem 4, and Theorem 5 in
rather conceptual method than such computa-
tional one as given here.
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