On Bernstein Algebras with Low-dimension Subspaces U^2

Kohei Miyamoto

Department of Education, Faculty of Letters,
Mukogawa Women’s University, Nishinomiya 663, Japan

Abstract

The aim of this paper is to study some relations between dimensions of the subspaces UZ, Z^2, U^2 and U^3 of a finite-dimensional Bernstein algebra $A = Ke + U + Z$. The main results are concerned in the dependency of $\dim U^3$ on $\dim U^2$ in the case of $\dim U^2 \leq 4$.

§ 0. Introduction

A nonassociative, commutative algebra A over a field K is called a Bernstein algebra if there exists a nonzero algebra homomorphism $\omega: A \to K$ that satisfies

$$(x^2)^2 = \omega(x)^2 x^2$$

for every $x \in A$. We suppose that K is an infinite field of characteristic different from 2 and that the dimension of a vector space A over K is finite.

It is known that a Bernstein algebra has always idempotents. If e is an idempotent of A, then A has a Peirce decomposition $A = Ke + U + Z$, where $Ker(\omega) = U + Z$, $U = \{x \in A | \omega(x) = 0\}$, $Z = \{x \in A | \omega(x) = 0\}$.

It is well known that the subspaces U and Z satisfy the following:

(a) $U \subseteq Z$, (b) $UZ + Z^2 \subseteq U$, (c) $UZ = \{0\}$.

It is also well known that the following identities hold for $u, u_1, u_2, u_3, u_4 \in U$ and for $z, z_1, z_2 \in Z$:

(d) $u^3 = 0, u_1^3 u_2 = -2u_1 (u_3 u_2)$,

(e) $(u^2)^2 = 0, u_1^2 u_2 u_3 = -2(u_1 u_3) u_2$,

(f) $u(uz) = 0, u_1(u_2 z) + u_2(u_1 z) = 0$;

(g) $(uz)^2 = 0, (u_1 z)(u_2 z) = 0$,

$(u_1 z)(u_2 z) = 0$,

$(u_1 z_1)(u_2 z_2) = -(u_1 z_2)(u_2 z_1)$.

On the other hand, it is known that the set of idempotents of A is given by $\{e + u + u^2 | u \in U\}$ and that if $A = Ke + U + Z$ is a Peirce decomposition of A with respect to another idempotent $\tilde{e} := e + \tilde{u} + \tilde{u}^2$, then

(h) $U = \{u + 2u \tilde{u} | u \in U\}$ and

$Z = \{z - 2(u \tilde{u}^2) z | z \in Z\}$.

Moreover, it is known that, $\dim U$ (and so also $\dim Z$) is an invariant of A, that is, it does not depend on the choice of the particular idempotent. Furthermore $\dim U^2$ and $\dim (UZ + Z^2)$ are also invariants of A. These invariants play a fundamental role in the problem of classifying all finite-dimensional Bernstein algebras, that is yet to be solved. In connection with that we are interested in possible combinations of the values of $\dim U^2, \dim U^3, \dim UZ, \dim Z^2$.

In the following the subspace spanned by $x_1, x_2, \ldots, x_i \in A$ over K is denoted by $\langle x_1, \ldots, x_i \rangle_K$, or simply $\langle x_1, \ldots, x_i \rangle$ if there exist no apprehensions of misinterpretations.

§ 1. Sufficient conditions for $\dim U^2 \leq 1$

We state some sufficient conditions for $\dim U^2$ to be equal to or less than 1.
Proposition 1. If \(\dim Z^2 = \dim U \), then \(U^2 = \langle 0 \rangle \).

\[\text{proof. Since } U = Z^2 \text{ by assumption and (a), it is clear that } U^2 = \langle 0 \rangle \text{ from (c).} \] \]

Proposition 2. If \(\dim Z^2 = \dim U - 1 \), then \(U^2 \leq 1 \).

\[\text{proof. Assume that } \dim Z^2 = \dim U - 1 \text{. Then there exists } u \neq 0 \in U \text{ such that } U = Z^2 + Ku. \text{ Hence } U^2 = UZ^2 + uU \subset u(Z^2 + Ku) \subset Ku^2 \text{ by (c).} \]
\[\therefore \dim U^2 \leq \dim K u^2 = 1. \] \]

Proposition 3. If there exists a nonzero element \(z \) in \(Z \) such that \(U = Uz \), then \(U^2 = \langle 0 \rangle \).

\[\text{proof. By assumption there exist a basis } \{ u_i (1 \leq i \leq p) \} \text{ of } U \text{ and an element } z \neq 0 \text{ of } Z \text{ such that } \{ u_i z (1 \leq i \leq p) \} \text{ is a basis of } U. \text{ Then, } u_i = \sum_j \alpha_j u_j \text{ with } \alpha_j \in K \text{ for each } i. \]
\[1 \leq i \leq p, \text{ we have } u_i u_k = \sum \alpha_j \alpha_k (u_j) (u_k) = 0 \text{ from (g).} \] \]

Proposition 4. If \(\dim U = \dim UZ = 1 \), then \(U^2 = \langle 0 \rangle \).

\[\text{proof. Let } z_1, \ldots, z_q \text{ be a basis of } Z \text{ and } U = Ku, u \neq 0. \text{ Since } UZ = U, \text{ there exist } \alpha_1, \ldots, \alpha_q \text{ in } K \text{ such that } u z_i = \alpha_i u \text{ (1 \leq i \leq q)}, \text{ where at least one element, e.g. } \alpha_1, \text{ is not 0. Then } u^2 = \alpha_1^{-2} (u z_i)^2 = 0 \text{ by (g).} \] \]

\section{The case \(U^2 = \langle 0 \rangle \) with \(UZ = U \)}

Proposition 5. If \(\dim UZ = \dim U, U^2 = \langle 0 \rangle \), and \(\dim Z = 1 \), then it is reduced to the case \(Z^2 = \langle 0 \rangle \).

\[\text{proof. The condition that } \dim UZ = \dim U \text{ is equivalent to } UZ = U \text{ by (b). Thus we show that, if } Z^2 = \langle 0 \rangle \text{, one can choose proper idempotent } \bar{e} \text{ so that } A = K \bar{e} + U + Z \text{ satisfying that } C \bar{e} = U, \bar{e}^2 = \langle 0 \rangle, \text{ and } Z^2 = \langle 0 \rangle. \]

Now choose one nonzero element \(z_1 \) of \(Z \) and put \(u_1 = z_1^2 \). If \(p = \dim U \), then \(Z^2 = K z_1^2 \) and there exists a basis \(\{ u_1, u_2, \ldots, u_p \} \) of \(U \) with \(u_1 = z_1^2 \). Since \(UZ = U, u_1 z_1, \ldots, u_p z_1 \text{ are linearly independent. Hence, if we write } u_i z_1 = \sum_j \alpha_j u_j \]
\[(i = 1, \ldots, p), \text{ then the determinant } \Delta = \det [\alpha_j] \text{ is not 0. Then, the linear equation } \sum \lambda_i (u z_i) z_1 = 0 \text{ with } \lambda_i \in K \text{ implies that } \sum \lambda_i (\sum_j \alpha_j u_j u z_i) = \sum \lambda_i (\sum_j \alpha_j a_j u z_i) = 0, \text{ therefore, } \sum_j \alpha_j a_j = 0 \text{ for each } j \text{ and the determinant of this linear system of linear equations is identical to } \Delta. \text{ Because } \Delta \neq 0, \text{ we have } \lambda_i = 0 \text{ for all } i, \text{ which means that } (u z_i) z_1, \ldots, (u p z_i) z_1 \text{ are linearly independent and there exist uniquely } \beta_i (i = 1, \ldots, p) \text{ in } K \text{ such that } u z_i = \sum \beta_i (u z_i) z_1. \text{ Now, if we define } u := \frac{1}{4} \sum \beta_i u_i \text{ and } \bar{e} := e + u, \text{ then, from (h), we get } U = \{ u + 2 u a | u \in U \} = U \text{ and } Z = \{ z - 2 a z | z \in Z \} = K (z_1 - 2 a z_1) \text{ with } (z_1 - 2 a z_1)^2 = 0 \text{ by } U^2 = \langle 0 \rangle \text{ and (g).} \]

\section{Some consequences of \(\dim U^2 = 1 \)}

Theorem 1. If \(\dim U^2 = 1 \), then \(U^2 = \langle 0 \rangle \) and \((U^2)^2 = \langle 0 \rangle \).

\[\text{proof. Let } \{ u_i | i = 1, \ldots, p \} \text{ be a basis of } U. \text{ Then, by assumption, there exists at least one nonzero element in the set } \{ u_i u_j | 1 \leq i, j \leq p \}. \text{ Let } z_i := u_i u_j u_0 \neq 0 \text{ and put } u_i u_j = a_i z_j \text{ with } a_i \in K \text{ for each pair } i, j (1 \leq i, j \leq p). \text{ Then there occur two possible cases: } i_0 = j_0 \text{ or } i_0 < j_0. \text{ We prove the assertion in each case.} \]

1) If \(i_0 = j_0 \), then we can assume that \(i_0 = j_0 = 1 \), i.e., \(z_1 = u_1 u_2 \) without loss of generality. From (d) we have that \(z_1 u_i = -2 a_i u_1 u_2 = 0 \) for all \(j \), which means that \(U^2 = \langle 0 \rangle \). On the other hand, since \(U^2 = K z_1^2 \text{ and } z_2^2 = 0 \text{ from (d), we get also } (U^2)^2 = \langle 0 \rangle. \]

2) If \(i_0 < j_0 \), then we can put \((i_0, j_0) = (1, 2) \), i.e., \(z_1 = u_1 u_2 \) without loss of generality. Then, by assumption and (d), it holds that

\[(1) \quad (u_1^2)^2 = a_1 u_2^2 = 0, \quad (u_2^2)^2 = a_2 u_1^2 = 0; \]

\[(2) \quad z_1 u_i = -\frac{1}{2} u_1^2 u_i u_2 = -\frac{1}{4} a_1 z_1 u_i u_2^2 = \frac{1}{4} a_{12} z_1 u_i; \]

and in like manner

\[(3) \quad z_2 u_1 = -\frac{1}{4} a_{12} z_1 u_2; \]

\[(4) \quad z_i u_i = -\frac{1}{2} a_1 z_2 u_1 + \frac{1}{2} a_2 z_1 u_2 \]

for all \(i (3 \leq i \leq p) \).
The equation (1) implies the following
\[(5) \; x_1^2 = 0 \quad \text{or} \quad a_{11} = a_{22} = 0.\]
Thus, if \(a_{11}a_{22} \neq 0\), then \(U^0 = \langle 0 \rangle\) by virtue of (2), (3) and (4), and moreover \(z_i^2 = -\frac{1}{2} u_i u_j^2 \) = \(-\frac{1}{2} a_{ij} u_i u_j^2\) by (5). On the contrary, if \(a_{11} a_{22} = 0\), then this case belongs to the case \(i_0 = j_0 = 1\), since \(u_i^2 = a_{ii} z_i \neq 0\).

Corollary 1. If \(\dim U^2 = \dim Z = 1\), then \(UZ + Z^2 = \langle 0 \rangle\).

proof. The claim follows from Theorem 1 since \(U^2 = Z\).

Theorem 2. If \(\dim U^2 = 1\) and \(\dim Z = 2\), then \(\dim UZ < \dim U\).

proof. Let \(\{u_1, \ldots, u_p\}\) be a basis of \(U\) and choose a basis \(\{z_1, z_2\}\) of \(Z\) such that \(U^2 = Kz_2\). Then we get \(UZ = \langle u_1 z_1, u_2 z_2 \rangle\) as a corollary of Theorem 1. Therefore \(UZ = \langle u_1 z_1, u_2 z_2 \rangle\). Put \(u_i z_1 = a_{i1} z_1 + a_{i2} z_2\) for every \(i, j\) and (f) \(\alpha_j \neq 0\). Then, since \(u_1 (u_2 z_1) + u_2 (u_2 z_2) = 0\) and \((u_2 z_2)(u_2 z_2) = 0\) from (f) and (g), respectively, the following equations hold for each pair \(i, j\):
\[(1) \quad \sum_{k} \alpha_{jk} a_{ik} = \sum_{k} \alpha_{jk} a_{ik} = 0,\]
\[(2) \quad \sum_{k} \alpha_{jk} a_{ik} = 0.\]

Define \(i_k = \sum_{k} \alpha_{jk} a_{ik} = \sum_{k} \alpha_{jk} a_{ik}\) and \(a_{ik} = \sum_{k} \alpha_{jk} a_{ik}\) for each \(k\). Then, from (1) \(0 = \sum_{k} \sum_{j} \alpha_{jk} a_{ik} = \sum_{k} \sum_{j} \alpha_{jk} a_{ik}\)\(\sum_{k} \alpha_{jk} a_{ik} = 0\). Therefore
\[(3) \quad \sum_{k} \alpha_{jk} a_{ik} = 0 \quad \text{for} \quad i = 1, \ldots, p.\]

There are two possible cases.

If \(i_k = 0\) for all \(k\), then, putting \(u_0 = \sum_{i} u_i\), we have that \(u_0 z_1 = \sum_{i} u_i z_1 = \sum_{i} \sum_{k} \alpha_{jk} a_{ik} u_i\) = \(\sum_{i} \sum_{k} \alpha_{jk} a_{ik} u_i\) = \(0\). Therefore, by adopting \(\{u_0, u_1, \ldots, u_p\}\) as a basis of \(U\), we get that \(U^2 = K(u_0 z_1)\). So \(\dim UZ = 2 < \dim U\).

If \(i_k \neq 0\) for some \(k_0\), then there exist two situations:

i) If \(\sum_{k} \alpha_{jk} a_{ik} \neq 0\) for some \(i\), then \(\xi_{1}, \ldots, \xi_{p}\) defined by \(\xi_{i} = \sum_{k} \alpha_{jk} a_{ik} (i = 1, \ldots, p)\) satisfy the simultaneous equations \(\sum_{k} \alpha_{jk} x_{k} = 0\) for \(j = 1, \ldots, p\), which is shown from (2), and \(\xi_{i} \neq 0\) for some \(i\) by assumption. Therefore \(\det(i_{jk})_{k=1} = 0\), which means that \(u_1 z_2, \ldots, u_p z_2\) are linearly dependent and \(\dim UZ < 2\).

ii) If \(\sum_{k} \alpha_{jk} x_{k} = 0\) for all \(i\), then equations (3) is reduced to
\[(4) \quad \sum_{k} \alpha_{jk} x_{k} = 0 \quad \text{for} \quad i = 1, \ldots, p.\]
Since \(u_i \sum_{k} \alpha_{jk} x_{k} = \sum_{k} \alpha_{jk} x_{k} = \alpha_{i2} z_1\) for all \(i\), the claim that \(a_{i2} = 0\) for all \(k\) is contrary to the assumption that \(\dim U^2 = 1\) and we can conclude that \(a_{i2} \neq 0\) for some \(k\). Then the simultaneous equations \(\sum_{k} x_{k} = 0\) for \(i = 1, \ldots, p\) have non-trivial solutions \(x_{k} = \alpha_{i2} z_1 = 1, \ldots, p\), which means that \(\dim UZ < 2\).

§ 4. The case \(\dim U^2 = 2, 3,\) or 4

First of all we state two lemmas which will be used in the proofs of the theorems following below. The first lemma is elementary.

Lemma 1. Let \(B = \{a_1, a_2, \ldots, a_k\} (k > 0)\) be a basis of a \(k\)-dimensional vector space \(V\) and \(b = \lambda a_i\) a nonzero vector with some \(\lambda_i \neq 0\). Then, also the set \(\{a_1, a_2, \ldots, a_{i-1}, b, a_{i+1}, \ldots, a_k\}\) obtained from \(B\) by replacing \(a_i\) with \(b\) is a basis of \(V\).

Lemma 2. Let \(\{u_1, \ldots, u_p\}\) be a basis of \(U\) and \(\{z_r = u_{i,j} | r = 1, \ldots, k\}\) a basis of \(U^2\), where we suppose that \(k = \dim U^2\), \(1 \leq i_1 \leq i_2 \leq \ldots \leq i_k \leq p\), \(1 \leq j_1 \leq j_2 \leq \ldots \leq j_k \leq p\), and \(i_1, j_1, \ldots, i_k, j_k\), for \(r = 1, 2, \ldots, k\). If \(X\) is a subspace of \(U\) and \(z_{r-j} \in X\) for each \(r = 1, \ldots, k\) and each \(t (1 \leq t \leq p)\), then \(z_{r-j} \in X\) for each \(r = 1, \ldots, k\) and each \(t (1 \leq t \leq p)\).

proof. We shall put \(z_r = u_{i,j} (i = i_r, j = j_r)\) for any \(s (1 \leq s \leq k)\) and \(u_{i,j} = \Sigma_{r} z_r, u_{i,j} = \Sigma_{r} z_r\) for each \(t = 1, \ldots, p\) with \(t = (i_1, i_2, j_2, \ldots, i_k, j_k)\). Then, by (d), \(z_{r-j} = - (u_{i,j} - (u_{i,j}) u_i = - \Sigma_{r} z_r - \Sigma_{r} z_r u_i\), where \(z_{r-j} \in X\) by assumption. Therefore \(z_{r-j} \in X\).

Theorem 3. If \(\dim U^2 = 2\), then \(U^2 = \langle 0 \rangle \) or else \(U^2 = \langle U^2 \rangle \) and, in either case, \(\dim U^2 \leq 1\).

proof. Let \(u_1, \ldots, u_p (p \geq 2)\) be a basis of \(U\). Then, by assumption, we can choose two
products u_iu_j and u_ku_l with $i\leq j, k\leq l, i \leq k,$ $(i, j) \neq (k, l)$, as a basis of U^2. On the other hand, we can easily see that each possible combination of $u_i, u_j; u_k, u_l$, denoted simply $[i, j], [k, l]$, belongs to one of the following five types, by changing the number i of u_i, if necessary:

1: $[11, 22]$ (i.e. $u_1^2, u_2^2)$
2: $[11, 12]$ (i.e. u_1^2, u_{12})
3: $[11, 23]$ (i.e. u_1^2, u_{13})
4: $[12, 13]$ (i.e. u_{12}, u_{13})
5: $[12, 34]$ (i.e. u_{12}, u_{34})

Once a basis z_1, z_2 of U^2 is chosen, each remaining product $u_iu_j \in U^2$ will be written $u_iu_j = \alpha_{ij}z_1 + \beta_{ij}z_2$ with $\alpha_{ij}, \beta_{ij} \in K$. We shall establish the assertion of the theorem for each type, separately.

Type 1: [11, 22]
We put $z_1 = u_1^2$ and $z_2 = u_2^2$. Then by (d)

1. $z_1u_1 = z_2u_2 = 0$, $z_1u_2 = 4\alpha_{12}\beta_{12}z_1u_2$.
and by (e)

2. $z_1^2 = z_2^2 = 0$, therefore

$z_1z_2 = -2(u_1u_2)^2 = -4\alpha_{12}\beta_{12}z_1z_2$.

If $4\alpha_{12}\beta_{12} = -1$, then we can conclude from (1) that $z_iu_j = 0$ for $i, j = 1, 2$, which implies by virtue of Lemma 2 that $z_iu_i = z_2u_i = 0$ for all $i (1 \leq i \leq p)$. Consequently we have $U^2 = 0$. On the contrary, if $4\alpha_{12}\beta_{12} \neq \pm 1$, we obtain that $U^2 \subset K_1u_2$ and $\dim U^2 \leq 1$ from (1). Also $(U^2)^2 = 0$ from (2). □

Type 2: [11, 12]
We put $z_1 = u_1^2$ and $z_2 = u_{12}u_2$. If $\beta_{22} \neq 0$, then this type is reduced to Type 1, as is seen easily by Lemma 1. Therefore we can suppose $\beta_{22} = 0$, that is, $u_2^2 = \alpha_{22}z_1$. Define X by $X := Kz_1u_2$. Then by (d) and by assumption

1. $z_1u_1 = 0$, $z_2u_1 = -\frac{1}{2}z_2u_2 \in X$, so

$z_2u_2 = -\frac{1}{2}z_2u_2z_1u_1 = 0$.

therefore by Lemma 2

2. $z_iu_i \in X$, $z_iu_1 \in X$ for all $i (1 \leq i \leq p)$.

Consequently we have $U^2 \subset X$ and so forth. Moreover, (e) and $(u_1u_2)^2 = -u_1^2u_2^2 = -\frac{1}{2}z_2u_2^2 = 0$ imply that $(U^2)^2 = 0$.

Type 3: [11, 23]
We put $z_1 = u_1^2$, and $z_2 = u_{13}$. If there exists at least one nonzero element in (β_{22}, β_{33}) or $(\alpha_{11}, \alpha_{33}, \beta_{12}, \beta_{13})$, then this type is reduced to Type 1 or Type 2, respectively, as is shown by Lemma 1. Therefore we can suppose that $\alpha_{22} = \beta_{33} = \beta_{12} = \beta_{13} = 0$, i.e., $u_2^2 = u_3^2 = 0$, $u_{12} = \alpha_{12}u_2$ and $u_{13} = \alpha_{13}u_3$. Then by assumption and (d)

1. $z_iu_i = z_4u_i = 0$ for $i = 1, 2, 3$.

Consequently by Lemma 2

2. $z_iu_i = z_3u_i = 0$ for all $i (1 \leq i \leq p)$, which means that $U^2 = \langle 0 \rangle$.

Type 4: [12, 13]
We put $z_1 = u_{12}u_2$ and $z_2 = u_{13}$. If there exists at least one nonzero element in $(\alpha_{11}, \alpha_{22}, \alpha_{33}, \beta_{23})$ or $(\beta_{22}, \alpha_{33}, \beta_{12}, \beta_{13})$, then this type is reduced to Type 2 or Type 3, respectively, as is shown by Lemma 1. Hence we can suppose that $\alpha_{22} = \beta_{33} = \beta_{12} = \beta_{13} = 0$, i.e., $u_2^2 = u_3^2 = 0$ for $i = 1, 2, 3$ and $u_{12}u_3 = \alpha_{23}z_1 + \beta_{23}z_2$. Now define the subspace X of U by $X := Kz_1u_3$. Then by assumption and (d)

1. $z_1u_1 = z_1u_2 = z_2u_1 = z_2u_3 = 0$, $z_2u_2 = -z_1u_3$.

Therefore by Lemma 2

2. $z_iu_i \in X$, $z_iu_1 \in X$ for $i (1 \leq i \leq p)$, which means that $U^2 \subset X$ and so forth. On the other hand, by assumption and (e), $z_i^2 = z_i^2 = z_1z_2 = 0$. This implies that $(U^2)^2 = \langle 0 \rangle$.

Type 5: [12, 34]
We put $z_1 = u_{12}u_2$ and $z_2 = u_{13}u_4$. If there exists at least one nonzero element in $(\alpha_{11}, \alpha_{22}, \alpha_{33}, \alpha_{44})$, $(\beta_{11}, \beta_{22}, \beta_{33}, \beta_{44})$, or $(\alpha_{12}, \alpha_{23}, \beta_{13}, \beta_{23}, \alpha_{14}, \alpha_{24}, \beta_{14}, \beta_{24})$, then this type is reduced to Type 2, 3, or 4, respectively, as is shown by Lemma 1. Therefore we can assume that $u_{12}u_i = 0$ for all $(i, j) \neq (1, 2), (3, 4), (1 \leq i, j \leq 4)$. Then by assumption and (d)

1. $z_1u_1 = z_1u_2 = z_2u_3 = z_2u_4 = 0$,

$z_1u_3 = z_1u_4 = z_2u_1 = z_2u_2 = 0$.

Then by Lemma 2

2. $z_iu_i = z_3u_i = 0$ for all $i (1 \leq i \leq p)$.

Therefore $U^2 = \langle 0 \rangle$ and so forth. □

Corollary 2. If $\dim U^2 = 2$ and $U^2 = Z$, then $UZ = \langle 0 \rangle$ or else $Z^2 = \langle 0 \rangle$, and, in either case, $\dim UZ \leq 1$.

On Bernstein Algebras with Low-dimension Subspace U^2

Theorem 4. If $\dim U^2 = 3$, then $\dim U^0 \leq 2$ or else $(U^0)^2 = \langle 0 \rangle$ and, in either case, $\dim U^0 \leq 3$.

proof. We shall prove the theorem in the same method as one for Theorem 3 that is composed of classifying the types of base elements of U^0 and computing separately according to the types, reducing to the established types before by virtue of Lemma 1 and Lemma 2. However, in order to avoid redundancy, we shall describe in the following only results of verification omitting the detail of computing.

Let u_1, \ldots, u_p be a basis of U. Then, by assumption, we can choose three products $u_{ij} = u_i u_j$ and $u_{mn} = u_m u_n$ with $i \neq j, k \neq l, m \neq n$, $i \leq k \leq m$, $(i, j) \neq (k, l) \neq (m, n)$, as a basis of U^0. Then each possible combination in three products, denoted by $[ij, kl, mn]$ for short, belongs to one of the fourteen types listed below by changing the number i of u_i, if necessary:

13: [12, 13, 45] 14: [12, 34, 56]

Once a basis z_1, z_2, z_3 of U^2 are chosen, every remaining product $u_{ij} \in U^2$ will be written $u_{ij} = \alpha_{ij} z_1 + \beta_{ij} z_2 + \gamma_{ij} z_3$ with $\alpha_{ij}, \beta_{ij}, \gamma_{ij} \in K$.

Type 1: [11, 12, 22]

We put $z_1 = u_1^2, z_2 = u_1 u_2$, and $z_3 = u_2^2$. Then it is shown that $U^0 \subset \langle z_1 u_2, z_3 u_1 \rangle$ and $\dim U^0 \leq 2$.

Type 2: [12, 22, 23]

We put $z_1 = u_2^2, z_2 = u_1 u_2$, and $z_3 = u_3 u_3$. Omitting the case that is reduced to Type 1, we can assume that $\alpha_{33} = \gamma_{13} = 0$. Then it is shown that $U^0 \subset \langle z_1 u_2, z_1 u_3, z_3 u_1 \rangle$ and that $z_1 u_2, z_1 u_3, z_3 u_1$ are linearly dependent, so $\dim U^0 \leq 2$.

Type 3: [11, 12, 23]

We put $z_1 = u_1^2, z_2 = u_1 u_2$, and $z_3 = u_2 u_3$. Omitting the case that is reduced to Type 1 or Type 2, we can assume that $\beta_{12} = \beta_{33} = \gamma_{23} = 0$. Then it is shown that $U^0 \subset \langle z_1 u_2, z_3 u_1 \rangle$ and so forth.

Type 4: [11, 22, 33]

We put $z_1 = u_1^2, z_2 = u_2^2$, and $z_3 = u_3^2$. Omitting the case that is reduced to Type 1 or Type 2, we can assume that $\alpha_{ij} = \beta_{ij} = \gamma_{ij} = 0$ for all i, j where $i \neq j \neq 3$. Then it is shown that $U^0 = \langle 0 \rangle$ and that, together with the preceding results, $\dim U^0 \leq 2$.

Type 5: [12, 22, 23]

We put $z_1 = u_1 u_2, z_2 = u_2^2$, and $z_3 = u_3^2$. Omitting the case that is reduced to Type 1, 2, or 3, we can assume that $\alpha_{11} = \gamma_{11} = \gamma_{33} = \beta_{11} = \beta_{33} = \alpha_{33} = \gamma_{33} = 0$. Then it is shown that $U^0 \subset \langle z_1 u_2, z_1 u_3, z_2 u_3 \rangle$ and that $(U^0)^2 = \langle 0 \rangle$.

Type 6: [12, 13, 23]

We put $z_1 = u_1 u_2, z_2 = u_2 u_3$, and $z_3 = u_3 u_3$. Omitting the case that is reduced to Type 2 or Type 5, we can assume that $\alpha_{ij} = \beta_{ij} = \gamma_{ij} = 0$ for $i = 1, 2, 3$. Then it is shown that $U^0 \subset \langle z_1 u_3, z_1 u_1 \rangle$ and so forth.

Type 7: [11, 22, 34]

We put $z_1 = u_1^2, z_2 = u_2^2$, and $z_3 = u_3 u_4$. Omitting the case that is reduced to Type 1, 2, 3, or 4, we can assume that $\alpha_{13} = \beta_{13} = \gamma_{13} = \alpha_{44} = \beta_{44} = \gamma_{44} = \gamma_{12} = \beta_{12} = \gamma_{12} = \beta_{12} = \gamma_{12} = \gamma_{24}$ = 0. Then it is shown that $U^0 \subset Kz_2 u_2$ and so forth.

Type 8: [11, 12, 34]

We put $z_1 = u_1^2, z_2 = u_1 u_2$, and $z_3 = u_3 u_4$. Omitting the case that is reduced to Type 1, 2, 3, or 7, we can assume that $\beta_{33} = \gamma_{33} = \beta_{44} = \gamma_{44} = \gamma_{12} = \beta_{12} = \gamma_{12} = \beta_{12} = \gamma_{12} = \gamma_{24}$ = 0. Then it is shown that $U^0 \subset Kz_2 u_2$ and so forth.

Type 9: [11, 23, 24]

We put $z_1 = u_1^2, z_2 = u_2 u_3$, and $z_3 = u_3 u_4$. Omitting the case that is reduced to Type 2, 3, 5, 7, or 8, we can assume that $\alpha_{ij} = \beta_{ij} = \gamma_{ij} = 0$ for $j = 2, 3, 4$. Then it is shown that $U^0 \subset Kz_2 u_4$ and so forth.

Type 10: [12, 13, 14]

We put $z_1 = u_1 u_2, z_2 = u_1 u_3$, and $z_3 = u_1 u_4$. Omitting the case that is reduced to Type 3, 5, 6, or 9, we can assume that $\alpha_{ii} = \beta_{ii} = \gamma_{ii} = 0$ for $i = 1, 2, 3, 4$ and $\alpha_{34} = \beta_{24} = \gamma_{23} = 0$. Then it
is shown that \(U^0 \subseteq \langle z_1 u_2, z_2 u_3, z_3 u_4 \rangle \) and that
\((U^0)^2 = \langle 0 \rangle \). □

Type 11: [12, 13, 24]
We put \(z_1 = u_1 u_2, z_2 = u_1 u_3, \) and \(z_3 = u_2 u_4 \).
Omitting the case that is reduced to Type 3, 5, 6, 8, 9, or 10, we can assume that \(\alpha_i = \beta_2 = \gamma_2 = 0 \) for \(i = 1, 2, 3, 4 \) and \(\beta_4 = \gamma_4 = 0 \) for \((i, j) = (1, 4), (2, 3) \). Then it is shown that
\(U^0 \subseteq \langle z_1 u_2, z_2 u_3, z_3 u_4 \rangle \) and so forth. □

Type 12: [11, 23, 45]
We put \(z_1 = u_1^2, z_2 = u_2 u_3, \) and \(z_3 = u_4 u_5 \).
Omitting the case that is reduced to Type 2, 3, 7, 8, 9, or 11, we can assume that \(\alpha_i = \beta_2 = \gamma_2 = 0 \) for \(i = 2, 3, 4, 5 \) and \(\alpha_4 = \beta_4 = \gamma_4 = 0 \) for \(i = 2, 3 \) and \(j = 4, 5 \) and \(\beta_4 = \gamma_4 = 0 \) for \(i = 2, 3, 4, 5 \). Then it is shown that
\(U^0 = \langle 0 \rangle \) and so forth. □

Type 13: [12, 13, 45]
We put \(z_1 = u_1 u_2, z_2 = u_1 u_3, \) and \(z_3 = u_3 u_5 \).
Omitting the case that is reduced to Type 3, 5, 6, 8, 9, 10, 11 or 12, we can assume that \(\alpha_i = \beta_2 = \gamma_2 = 0 \) for \(i = 1, 2, 3, 4, 5 \) and \(\alpha_4 = \alpha_{12} = \beta_4 = \beta_5 = \gamma_4 = \gamma_5 = \gamma_2 = \gamma_3 = \gamma_3 = 0 \). Then it is shown that
\(U^0 \subseteq \langle z_1 u_2, z_2 u_3, z_3 u_5 \rangle \) and so forth. □

Type 14: [12, 34, 56]
We put \(z_1 = u_1 u_2, z_2 = u_3 u_4, \) and \(z_3 = u_3 u_6 \).
Omitting the case that is reduced to Type 8, 10, 11, 12, or 13, we can assume that \(u_m u_j = 0 \) for every pair \((i, j) \neq (1, 2), (3, 4), (5, 6) (1 \leq i, j \leq 6) \). Then it is shown that \(U^0 = \langle 0 \rangle \) and so forth. □

Corollary 3. If \(\dim U^0 = 3 \) and \(U^0 = \mathbb{Z} \), then
\(\dim UZ \leq 2 \) or else \(Z^0 = \langle 0 \rangle \), and, in either case,
\(\dim UZ \leq 3 \).

Theorem 5. If \(\dim U^0 = 4 \), then \(\dim U^0 \leq 5 \) or else \((U^0)^2 = \langle 0 \rangle \) and, in either case,
\(\dim U^0 \leq 6 \).

proof. We shall state here only results of verification omitting the detail of computing.

Let \(u_1, \ldots, u_p \) be a basis of \(U \). Then, by assumption, we can choose four products \(z_1 = u_1 u_5, z_2 = u_2 u_1, z_3 = u_3 u_5, \) and \(z_4 = u_3 u_1 \), where

\[
i \leq j, k \leq l, m \leq n, s \leq t, i \leq k \leq m \leq s, (i, j) \neq (k, l) \neq (m, n) \neq (s, t),\]

as a basis of \(U^0 \). Then each possible combination in the four products, denoted by \([ij, kl, mn, st]\), belongs to one of the following thirty-nine types by changing the number \(i \) of \(u_i \) if necessary:

<table>
<thead>
<tr>
<th>Type</th>
<th>Formulas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>([11, 12, 13, 22])</td>
</tr>
<tr>
<td>2</td>
<td>([11, 12, 13, 23])</td>
</tr>
<tr>
<td>3</td>
<td>([11, 13, 22, 23])</td>
</tr>
<tr>
<td>4</td>
<td>([11, 12, 22, 23])</td>
</tr>
<tr>
<td>5</td>
<td>([11, 12, 13, 14])</td>
</tr>
<tr>
<td>6</td>
<td>([11, 13, 14, 22])</td>
</tr>
<tr>
<td>7</td>
<td>([11, 12, 13, 14])</td>
</tr>
<tr>
<td>8</td>
<td>([11, 14, 22, 23])</td>
</tr>
<tr>
<td>9</td>
<td>([11, 12, 13, 24])</td>
</tr>
<tr>
<td>10</td>
<td>([11, 12, 12, 23])</td>
</tr>
<tr>
<td>11</td>
<td>([11, 13, 22, 24])</td>
</tr>
<tr>
<td>12</td>
<td>([11, 12, 24, 23])</td>
</tr>
<tr>
<td>13</td>
<td>([11, 12, 13, 24])</td>
</tr>
<tr>
<td>14</td>
<td>([11, 12, 23, 24])</td>
</tr>
<tr>
<td>15</td>
<td>([12, 13, 24, 24])</td>
</tr>
<tr>
<td>16</td>
<td>([12, 13, 14, 23])</td>
</tr>
<tr>
<td>17</td>
<td>([12, 13, 24, 24])</td>
</tr>
<tr>
<td>18</td>
<td>([11, 22, 33, 45])</td>
</tr>
<tr>
<td>19</td>
<td>([11, 13, 22, 25])</td>
</tr>
<tr>
<td>20</td>
<td>([11, 22, 34, 35])</td>
</tr>
<tr>
<td>21</td>
<td>([11, 12, 23, 45])</td>
</tr>
<tr>
<td>22</td>
<td>([11, 12, 13, 45])</td>
</tr>
<tr>
<td>23</td>
<td>([11, 23, 24, 35])</td>
</tr>
<tr>
<td>24</td>
<td>([11, 13, 24, 25])</td>
</tr>
<tr>
<td>25</td>
<td>([13, 14, 15, 15])</td>
</tr>
<tr>
<td>26</td>
<td>([12, 13, 14, 15])</td>
</tr>
<tr>
<td>27</td>
<td>([12, 13, 24, 25])</td>
</tr>
<tr>
<td>28</td>
<td>([12, 13, 24, 35])</td>
</tr>
<tr>
<td>29</td>
<td>([12, 14, 23, 35])</td>
</tr>
<tr>
<td>30</td>
<td>([12, 13, 23, 45])</td>
</tr>
<tr>
<td>31</td>
<td>([12, 11, 22, 34, 36])</td>
</tr>
<tr>
<td>32</td>
<td>([12, 11, 12, 34, 36])</td>
</tr>
<tr>
<td>33</td>
<td>([12, 13, 23, 46, 56])</td>
</tr>
<tr>
<td>34</td>
<td>([12, 13, 14, 46, 56])</td>
</tr>
<tr>
<td>35</td>
<td>([12, 13, 24, 56])</td>
</tr>
<tr>
<td>36</td>
<td>([13, 14, 25, 26])</td>
</tr>
<tr>
<td>37</td>
<td>([11, 23, 45, 67])</td>
</tr>
<tr>
<td>38</td>
<td>([12, 13, 45, 67])</td>
</tr>
<tr>
<td>39</td>
<td>([13, 24, 56, 78])</td>
</tr>
</tbody>
</table>

Type 1: [11, 12, 13, 22]
We put \(z_1 = u_1^2, z_2 = u_1 u_2, z_3 = u_1 u_3, \) and \(z_4 = u_2^3 \). Then it is shown that
\(U^0 \subseteq \langle z_1 u_2, z_1 u_3, z_2 u_3, z_4 u_1 \rangle \) and so \(\dim U^0 \leq 4 \). □

Type 2: [11, 12, 13, 23]
We put \(z_1 = u_1^2, z_2 = u_1 u_2, z_3 = u_1 u_3, \) and \(z_4 = u_2 u_3 \). Omitting the case that is reduced to Type 1, we obtain that
\(U^0 \subseteq \langle z_1 u_2, z_1 u_3, z_3 u_3, z_4 u_1 \rangle \) and so \(\dim U^0 \leq 4 \). □

Type 3: [11, 13, 22, 23]
We put \(z_1 = u_1^2, z_2 = u_1 u_2, z_3 = u_2^2, \) and \(z_4 = u_2 u_3 \). Omitting the case that is reduced to Type 1 or Type 2, we obtain that
\(U^0 \subseteq \langle z_1 u_2, z_2 u_3, z_4 u_1 \rangle \) and that, together with the preceding results,
\(\dim U^0 \leq 4 \). □

Type 4: [11, 12, 22, 33]
We put \(z_1 = u_1^2, z_2 = u_1 u_2, z_3 = u_2^2, \) and \(z_4 = u_2^3 \). Omitting the case that is reduced to Type 1?
or Type 3, we obtain that \(U^0 \subset \langle z_1 u_2, z_3 u_4 \rangle \) and that, together with the preceding results, \(\dim U^0 \leq 5 \).

Type 5: [11, 22, 33, 44]

We put \(z_1 = u_1^2, z_2 = u_1 u_2, z_3 = u_1 u_4, \) and \(z_4 = u_2^2 \). Omitting the case that is reduced to Type 4, we obtain that \(U^0 \subset \langle z_1 u_2, z_1 u_3, z_1 u_4, z_2 u_3, z_2 u_4, z_3 u_4, z_4 u_4 \rangle \) and that \(z_1 u_2, z_1 u_3, z_1 u_4, z_2 u_3, z_2 u_4, z_3 u_4, z_4 u_4 \) are linearly dependent, so \(\dim U^0 \leq 5 \), or else \((U^0)^2 = \langle 0 \rangle \).

Type 6: [11, 13, 14, 22]

We put \(z_1 = u_1^2, z_2 = u_1 u_3, z_3 = u_1 u_4, \) and \(z_4 = u_2^2 \). Omitting the case that is reduced to Type 1, \(2, 3, 4, \) or 5, we obtain that \(U^0 \subset \langle z_1 u_2, z_1 u_3, z_1 u_4, z_2 u_3, z_2 u_4, z_3 u_4, z_4 u_4 \rangle \) and that \(z_1 u_2, z_1 u_3, z_1 u_4, z_2 u_3, z_2 u_4, z_3 u_4, z_4 u_4 \) are linearly dependent, so \(\dim U^0 \leq 5 \), or else \((U^0)^2 = \langle 0 \rangle \).

Type 7: [11, 12, 13, 14]

We put \(z_1 = u_1^2, z_2 = u_1 u_2, z_3 = u_1 u_4, \) and \(z_4 = u_2 u_4 \). Omitting the case that is reduced to Type 1, \(2, \) or 6, we obtain that \(U^0 \subset \langle z_1 u_2, z_1 u_3, z_1 u_4, z_2 u_3, z_2 u_4, z_3 u_4, z_4 u_4 \rangle \) and that \((U^0)^2 = \langle 0 \rangle \).

Type 8: [11, 14, 22, 33]

We put \(z_1 = u_1^2, z_2 = u_1 u_4, z_3 = u_2, \) and \(z_4 = u_1 u_4 \). Omitting the case that is reduced to Type 1, \(3, 4, 5, \) or 6, we obtain that \(U^0 \subset \langle z_1 u_4, z_2 u_4 \rangle \) and so forth.

Type 9: [11, 12, 13, 24]

We put \(z_1 = u_1^2, z_2 = u_1 u_2, z_3 = u_4, \) and \(z_4 = u_4 u_4 \). Omitting the case that is reduced to Type 1, \(2, 3, 4, 6, \) or 7, we obtain that \(U^0 \subset \langle z_1 u_2, z_2 u_3, z_2 u_4, z_4 u_4 \rangle \) and so on.

Type 10: [11, 12, 22, 34]

We put \(z_1 = u_1^2, z_2 = u_1 u_2, z_3 = u_1 u_4, \) and \(z_4 = u_3 u_4 \). Omitting the case that is reduced to Type 1, \(8, 9, \) or 10, we obtain that \(U^0 \subset \langle z_1 u_2, z_3 u_4 \rangle \) and so forth.

Type 11: [11, 13, 22, 24]

We put \(z_1 = u_1^2, z_2 = u_1 u_3, z_3 = u_2, \) and \(z_4 = u_2 u_4 \). Omitting the case that is reduced to Type 1, \(3, 4, 6, 9, \) or 10, we obtain that \(U^0 \subset \langle z_1 u_2, z_3 u_4 \rangle \) and so forth.

Type 12: [11, 12, 24, 33]

We put \(z_1 = u_1^2, z_2 = u_1 u_2, z_3 = u_2 u_4, \) and \(z_4 = u_2 \). Omitting the case that is reduced to Type 1, \(2, 3, 4, 6, 8, 9, \) or 10, we obtain that \(U^0 \subset \langle z_1 u_2, z_3 u_4 \rangle \) and so forth.

Type 13: [11, 12, 23, 34]

We put \(z_1 = u_1^2, z_2 = u_1 u_2, z_3 = u_3 u_3, \) and \(z_4 = u_3 u_4 \). Omitting the case that is reduced to Type 1, \(2, 3, 6, 8, \) or 9, 10, 11, or 12, we obtain that \(U^0 \subset \langle z_1 u_2, z_3 u_4, z_4 u_4 \rangle \) and so on.

Type 14: [11, 12, 23, 24]

We put \(z_1 = u_1^2, z_2 = u_1 u_2, z_3 = u_2 u_4, \) and \(z_4 = u_4 u_2 \). Omitting the case that is reduced to Type 1, \(2, 3, 4, 6, 7, 8, 9, \) or 12, or 13, we obtain that \(U^0 \subset \langle z_1 u_2, z_3 u_1, z_4 u_1, z_4 u_4 \rangle \) and so on.

Type 15: [11, 23, 24, 34]

We put \(z_1 = u_1^2, z_2 = u_1 u_3, z_3 = u_4, \) and \(z_4 = u_4 u_4 \). Omitting the case that is reduced to Type 2, \(6, 12, 13, \) or 14, we obtain that \(U^0 \subset \langle z_3 u_2, z_4 u_2 \rangle \) and so forth.

Type 16: [12, 13, 14, 23]

We put \(z_1 = u_1 u_2, z_2 = u_1 u_3, z_3 = u_1 u_4, \) and \(z_4 = u_4 u_4 \). Omitting the case that is reduced to Type 2, \(7, 9, 13, 14, \) or 15, we obtain that \(U^0 \subset \langle z_2 u_2, z_3 u_3, z_3 u_4, z_4 u_4 \rangle \) and so forth.

Type 17: [12, 13, 24, 34]

We put \(z_1 = u_1 u_2, z_2 = u_1 u_3, z_3 = u_4, \) and \(z_4 = u_4 u_4 \). Omitting the case that is reduced to Type 9, \(13, \) or 16, we obtain that \(U^0 \subset \langle z_1 u_4, z_2 u_2, z_3 u_1, z_4 u_2 \rangle \) and so forth.

Type 18: [11, 22, 33, 45]

We put \(z_1 = u_1^2, z_2 = u_2, z_3 = u_3^2, \) and \(z_4 = u_4 u_4 \). Omitting the case that is reduced to Type 2, \(5, \) 8, 10, or 12, we obtain that \(U^0 \subset \langle z_1 u_2, z_2 u_3, z_4 u_3 \rangle \) and so forth.

Type 19: [11, 13, 22, 45]

We put \(z_1 = u_1^2, z_2 = u_1 u_3, z_3 = u_2, \) and \(z_4 = u_4 u_4 \). Omitting the case that is reduced to Type 1, \(3, 4, 6, 9, \) or 10, we obtain that \(U^0 \subset \langle z_1 u_2, z_1 u_3, z_2 u_2 \rangle \) and so forth.

Type 20: [11, 22, 34, 35]

We put \(z_1 = u_1^2, z_2 = u_2, z_3 = u_3 u_4, \) and \(z_4 = u_3 u_3 \). Omitting the case that is reduced to Type 8, \(9, \) 10, 12, 14, 15, 16, 18, or 19, we get that \(U^0 \subset \langle z_1 u_2, z_3 u_4 \rangle \) and so forth.

Type 21: [11, 12, 23, 45]

We put \(z_1 = u_1^2, z_2 = u_1 u_2, z_3 = u_2 u_3, \) and \(z_4 = u_4 u_4 \). Omitting the case that is reduced to Type
1 , 2 , 3 , 9 , 10 , 11 , 12 , 13 , or 19, we obtain that
$U \subset \langle z_1 u_2 , z_1 u_3 \rangle$ and so forth. □

Type 22: [11, 12, 13, 45]
We put $z_1 = u_1^2$, $z_2 = u_2 u_3$, $z_3 = u_1 u_3$, and $z_4 = u_4 u_5$. Omitting the case that is reduced to Type 1 , 2 , 6 , 7 , 9 , 10 , 11 , 13 , or 21, we obtain that
$U \subset \langle z_1 u_2 , z_1 u_3 , z_3 u_4 \rangle$ and so forth. □

Type 23: [11, 23, 24, 35]
We put $z_1 = u_1^2$, $z_2 = u_2 u_3$, $z_3 = u_3 u_4$, and $z_4 = u_4 u_5$. Omitting the case that is reduced to Type 6 , 9 , 12 , 13 , 14 , 15 , 16 , 17 , 19 , 20 , 21 , or 22, we obtain that
$U \subset \langle z_1 u_2 , z_1 u_3 , z_3 u_4 , z_4 u_1 \rangle$ and so forth. □

Type 24: [11, 13, 24, 25]
We put $z_1 = u_1^2$, $z_2 = u_2 u_3$, $z_3 = u_3 u_4$, and $z_4 = u_4 u_5$. Omitting the case that is reduced to Type 9 , 10 , 11 , 12 , 13 , 14 , 15 , 19 , 20 , 21 , or 22, we obtain that
$U \subset \langle z_1 u_2 , z_1 u_3 , z_3 u_4 , z_4 u_1 \rangle$ and that dim $U \leq 5$, or else $(U)^2 = \langle 0 \rangle$ and that dim $U \leq 6$. □

Type 25: [13, 14, 15, 22]
We put $z_1 = u_1 u_3$, $z_2 = u_1 u_4$, $z_3 = u_1 u_5$, and $z_4 = u_2^2$. Omitting the case that is reduced to Type 6 , 7 , 12 , 13 , 14 , 15 , 16 , 19 , 20 , 23 , or 24, we obtain that
$U \subset \langle z_1 u_2 , z_1 u_3 , z_2 u_4 \rangle$ and so forth. □

Type 26: [12, 13, 14, 15]
We put $z_1 = u_1 u_2$, $z_2 = u_1 u_3$, $z_3 = u_1 u_4$, and $z_4 = u_1 u_5$. Omitting the case that is reduced to Type 7 , 14 , 16 , or 25, we obtain that
$U \subset \langle z_1 u_2 , z_1 u_3 , z_1 u_4 , z_2 u_4 , z_3 u_4 , z_4 u_1 \rangle$ and that $z_1 u_2$, $z_1 u_4$, $z_1 u_4$, $z_2 u_4$, $z_3 u_4$, $z_5 u_5$ are linearly dependent, so dim $U \leq 5$, or else $(U)^2 = \langle 0 \rangle$ and that dim $U \leq 6$. □

Type 27: [12, 13, 14, 25]
We put $z_1 = u_1 u_2$, $z_2 = u_1 u_3$, $z_3 = u_1 u_4$, and $z_4 = u_2 u_5$. Omitting the case that is reduced to Type 7 , 9 , 13 , 14 , 16 , 17 , 21 , 22 , 23 , 24 , 25 , or 26, we obtain that
$U \subset \langle z_1 u_3 , z_1 u_4 , z_1 u_5 , z_2 u_3 \rangle$ and so forth. □

Type 28: [12, 13, 24, 35]
We put $z_1 = u_1 u_2$, $z_2 = u_1 u_3$, $z_3 = u_2 u_4$, and $z_4 = u_2 u_5$. Omitting the case that is reduced to Type 9 , 13 , 16 , 17 , 21 , 22 , 23 , 24 , or 27, we obtain that
$U \subset \langle z_1 u_3 , z_1 u_4 , z_2 u_3 \rangle$ and so forth. □

Type 29: [12, 14, 23, 35]
We put $z_1 = u_1 u_2$, $z_2 = u_1 u_4$, $z_3 = u_2 u_3$, and $z_4 = u_3 u_5$. Omitting the case that is reduced to Type 9 , 13 , 16 , 17 , 21 , 22 , 23 , 24 or 27, we get that
$U \subset \langle z_1 u_2 , z_1 u_4 , z_2 u_3 \rangle$ and so on. □

Type 30: [12, 13, 23, 45]
We put $z_1 = u_1 u_2$, $z_2 = u_1 u_3$, $z_3 = u_2 u_3$, and $z_4 = u_4 u_5$. Omitting the case that is reduced to Type 2 , 15 , 16 , 21 , 22 , 24 , 27 , or 28, we obtain that
$U \subset \langle z_1 u_2 , z_2 u_3 \rangle$ and so forth. □

Type 31: [11, 22, 34, 56]
We put $z_1 = u_1^2$, $z_2 = u_2^2$, $z_3 = u_3 u_4$, and $z_4 = u_3 u_4$. Omitting the case that is reduced to Type 8 , 10 , 12 , 18 , 19 , 20 , 21 , or 23, we obtain that
$U \subset K z_1 u_2$ and so forth. □

Type 32: [11, 12, 34, 56]
We put $z_1 = u_1^2$, $z_2 = u_1 u_2$, $z_3 = u_2 u_4$, and $z_4 = u_3 u_4$. Omitting the case that is reduced to Type 9 , 10 , 11 , 13 , 19 , 21 , 22 , 23 , 24 , or 31, we obtain that
$U \subset K z_1 u_2$ and so forth. □

Type 33: [11, 23, 24, 56]
We put $z_1 = u_1^2$, $z_2 = u_2 u_3$, $z_3 = u_3 u_4$, and $z_4 = u_3 u_4$. Omitting the case that is reduced to Type 6 , 12 , 13 , 14 , 15 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 27 , 29 , 30 , 31 , or 32, we obtain that
$U \subset K z_2 u_4$ and so forth. □

Type 34: [12, 13, 14, 56]
We put $z_1 = u_1 u_2$, $z_2 = u_1 u_3$, $z_3 = u_1 u_4$, and $z_4 = u_3 u_5$. Omitting the case that is reduced to Type 7 , 14 , 16 , 21 , 22 , 24 , 25 , 26 , 27 , 29 , 30 , or 33, we obtain that
$U \subset \langle z_1 u_3 , z_1 u_4 , z_4 u_1 \rangle$ and so forth. □

Type 35: [12, 13, 24, 56]
We put $z_1 = u_1 u_2$, $z_2 = u_1 u_3$, $z_3 = u_2 u_4$, and $z_4 = u_3 u_6$. Omitting the case that is reduced to Type 9 , 13 , 16 , 17 , 21 , 22 , 23 , 24 , 27 , 28 , 29 , 30 , 32 , 33 , or 34, we obtain that
$U \subset \langle z_1 u_3 , z_4 u_1 \rangle$ and so forth. □

Type 36: [13, 14, 25, 26]
We put $z_1 = u_1 u_3$, $z_2 = u_1 u_4$, $z_3 = u_2 u_5$, and $z_4 = u_2 u_5$. Omitting the case that is reduced to Type 21 , 22 , 24 , 27 , 29 , 30 , 33 , 34 , or 35, we obtain that
$U \subset \langle z_3 u_4 , z_4 u_1 \rangle$ and so on. □

Type 37: [11, 23, 45, 67]
We put $z_1 = u_1^2$, $z_2 = u_2 u_3$, $z_3 = u_4 u_5$, and $z_4 = u_6 u_7$. Omitting the case that is reduced to Type 19, 21, 23, 31, 32, 33, or 35, we obtain that $U^0 = \langle 0 \rangle$ and so forth. □

Type 38: [12, 13, 45, 67]

We put $z_1 = u_1 u_2$, $z_2 = u_3 u_4$, $z_3 = u_5 u_6$, and $z_4 = u_7 u_8$. Omitting the case that is reduced to Type 21, 22, 24, 27, 29, 30, 32, 33, 34, 35, 36, or 37, we obtain that $U^0 \subseteq K z_1 u_3$ and so on. □

Type 39: [12, 34, 56, 78]

We put $z_1 = u_1 u_2$, $z_2 = u_3 u_4$, $z_3 = u_5 u_6$, and $z_4 = u_7 u_8$. Omitting the case that is reduced to Type 32, 35, 37, or 38, we obtain that $U^0 = \langle 0 \rangle$ and so forth. □

Corollary 4. If $\dim U^0 = 4$ and $U^0 = Z$, then $\dim U Z \leq 5$ or else $Z^2 = \langle 0 \rangle$ and, in either case, $\dim U Z \leq 6$.

Remark on Theorem 5.

One cannot replace the number 6 in the theorem with any other less values. In order to show this, we shall construct the example of Bernstein algebra in which $\dim U^0 = 4$ and $U^0 = 6$ (and $(U^0)^2 = \langle 0 \rangle$).

Example.

Let $A = \langle e, u_1, \ldots, u_{10}, z_1, \ldots, z_6 \rangle$ be a commutative 15-dimensional algebra having the following multiplication table:

- $e^2 = e$, $eu = \frac{1}{2}u$, $ez = 0$, $u^2 = z$
 \[(i = 1, \ldots, 10; j = 1, \ldots, 4) \]
- $u_j u_2 = \alpha z_1 + \frac{1}{4} \alpha^{-1} z_2$
- $u_j u_3 = 2 \alpha \beta z_1 + \frac{1}{8} (\alpha \beta)^{-1} z_2$
- $u_j u_4 = 4 \alpha \beta z_1 + \frac{1}{16} (\alpha \beta)^{-1} z_2$
- $u_j u_5 = \beta z_2 + \frac{1}{4} \beta^{-1} z_2$
- $u_j u_6 = 2 \beta z_2 + \frac{1}{8} (\beta)^{-1} z_2$
- $u_j u_7 = \gamma z_3 + \frac{1}{4} \gamma^{-1} z_4$
- $u_j u_8 = u_3 u_4 = u_6 u_7$
- $u_j u_9 = u_8 u_4 = u_9 u_4 = u_{10}$
- $u_j u_1 = 2 \alpha \beta u_4$
- $u_j u_1 = -2 \alpha \beta u_5$
- $u_j u_1 = -2 \alpha \beta u_6$
- $u_j u_1 = -2 \alpha \beta u_7$

$z_4 u_2 = -4 \beta \gamma u_9$, $z_4 u_3 = -2 \gamma u_10$,

where α, β, γ are arbitrary nonzero elements in K, and other products are zero. Then one can see that A is a Bernstein algebra having the decomposition $A = Ke + U + Z$ with respect to the idempotent e with $U = \langle u_1, \ldots, u_{10} \rangle$, $Z = \langle z_1, \ldots, z_6 \rangle$ and, moreover, that it satisfies $U^0 = Z$, $U^0 = \langle u_3, \ldots, u_{10} \rangle$ and $(U^0)^2 = \langle 0 \rangle$.

We hope to generalize the relation between $\dim U^0$ and $\dim U^0$ to the case of $\dim U^0 > 4$. For that purpose it may be more desirable to prove Theorem 3, Theorem 4, and Theorem 5 in rather conceptual method than such computational one as given here.

References

1) A. Wörz-Busekros, *Algebra in Genetics*
pp.203–223 (1980)